Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Munchausen Reinforcement Learning #466

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions benchmark/dqn_munchausen.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
poetry install
OMP_NUM_THREADS=1 xvfb-run -a poetry run python -m cleanrl_utils.benchmark \
--env-ids CartPole-v1 Acrobot-v1 MountainCar-v0 \
--command "poetry run python cleanrl/dqn_munchausen.py --no_cuda --track --capture_video" \
--num-seeds 3 \
--workers 9
264 changes: 264 additions & 0 deletions cleanrl/dqn_munchausen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_munchausenpy
# Paper link: https://arxiv.org/pdf/2007.14430
import os
import random
import time
from dataclasses import dataclass

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tyro
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter


@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "cleanRL"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
save_model: bool = False
"""whether to save model into the `runs/{run_name}` folder"""
upload_model: bool = False
"""whether to upload the saved model to huggingface"""
hf_entity: str = ""
"""the user or org name of the model repository from the Hugging Face Hub"""

# Algorithm specific arguments
env_id: str = "CartPole-v1"
"""the id of the environment"""
total_timesteps: int = 500000
"""total timesteps of the experiments"""
learning_rate: float = 2.5e-4
"""the learning rate of the optimizer"""
num_envs: int = 1
"""the number of parallel game environments"""
buffer_size: int = 10000
"""the replay memory buffer size"""
gamma: float = 0.99
"""the discount factor gamma"""
tau: float = 1.0
"""the target network update rate"""
target_network_frequency: int = 500
"""the timesteps it takes to update the target network"""
batch_size: int = 128
"""the batch size of sample from the reply memory"""
learning_starts: int = 10000
"""timestep to start learning"""
train_frequency: int = 10
"""the frequency of training"""
tau_soft: float = 0.03
"""the temperature parameter for the soft-max policy"""
alpha: float = 0.9
"""the entropy regularization parameter"""
l_0: float = -1.0
"""the lower bound of the weighted log probability"""
epsilon_tar: float = 1e-6
"""the epsilon term for numerical stability"""


def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)

return env

return thunk


# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
def __init__(self, env):
super().__init__()
self.network = nn.Sequential(
nn.Linear(np.array(env.single_observation_space.shape).prod(), 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, env.single_action_space.n),
)

def forward(self, x):
return self.network(x)


if __name__ == "__main__":
import stable_baselines3 as sb3

if sb3.__version__ < "2.0":
raise ValueError(
"""Ongoing migration: run the following command to install the new dependencies:

poetry run pip install "stable_baselines3==2.0.0a1"
"""
)
args = tyro.cli(Args)
assert args.num_envs == 1, "vectorized envs are not supported at the moment"
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb

wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)

# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic

device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

# env setup
envs = gym.vector.SyncVectorEnv(
[make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"

q_network = QNetwork(envs).to(device)
optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
target_network = QNetwork(envs).to(device)
target_network.load_state_dict(q_network.state_dict())

rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
handle_timeout_termination=False,
)
start_time = time.time()

# TRY NOT TO MODIFY: start the game
obs, _ = envs.reset(seed=args.seed)
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
if global_step < args.learning_starts:
actions = np.array([envs.single_action_space.sample() for _ in range(args.num_envs)])
else:
with torch.no_grad():
q_values = q_network(torch.Tensor(obs).to(device))
policy = F.softmax(q_values / args.tau_soft, dim=-1)
actions = torch.multinomial(policy, 1).squeeze(-1).cpu().numpy()
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, terminations, truncations, infos = envs.step(actions)

# TRY NOT TO MODIFY: record rewards for plotting purposes
if "final_info" in infos:
for info in infos["final_info"]:
if info and "episode" in info:
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)

# TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
real_next_obs = next_obs.copy()
for idx, trunc in enumerate(truncations):
if trunc:
real_next_obs[idx] = infos["final_observation"][idx]
rb.add(obs, real_next_obs, actions, rewards, terminations, infos)

# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs

# ALGO LOGIC: training.
if global_step > args.learning_starts:
if global_step % args.train_frequency == 0:
data = rb.sample(args.batch_size)
with torch.no_grad():
target_q_values = target_network(data.observations)
target_policy = F.softmax(target_q_values / args.tau_soft, dim=-1)
target_next_q_values = target_network(data.next_observations)
target_next_policy = F.softmax(target_next_q_values / args.tau_soft, dim=-1)
red_term = args.alpha * (
args.tau_soft * torch.log(target_policy.gather(1, data.actions)) + args.epsilon_tar).clamp(args.l_0, 0.0)
blue_term = -args.tau_soft * torch.log(target_next_policy + args.epsilon_tar)
munchausen_target = (data.rewards + red_term + args.gamma * (1 - data.dones)* (target_next_policy * (target_next_q_values + blue_term)).sum(dim=-1).unsqueeze(-1))
td_target = munchausen_target.squeeze()
old_val = q_network(data.observations).gather(1, data.actions).squeeze()
loss = F.mse_loss(td_target, old_val)

if global_step % 100 == 0:
writer.add_scalar("losses/td_loss", loss, global_step)
writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
writer.add_scalar("losses/td_target", td_target.mean().item(), global_step)
writer.add_scalar("losses/log_policy", red_term.mean().item(), global_step)
writer.add_scalar("losses/entropy", blue_term.mean().item(), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

# optimize the model
optimizer.zero_grad()
loss.backward()
optimizer.step()

# update target network
if global_step % args.target_network_frequency == 0:
for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
target_network_param.data.copy_(
args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
)

if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save(q_network.state_dict(), model_path)
print(f"model saved to {model_path}")
from cleanrl_utils.evals.dqn_munchausen_eval import evaluate

episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=QNetwork,
device=device,
epsilon=0.05,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)

if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub

repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "DQN_MUNCHAUSEN", f"runs/{run_name}", f"videos/{run_name}-eval")

envs.close()
writer.close()
60 changes: 60 additions & 0 deletions cleanrl_utils/evals/dqn_munchausen_eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import random
from typing import Callable

import gymnasium as gym
import numpy as np
import torch


def evaluate(
model_path: str,
make_env: Callable,
env_id: str,
eval_episodes: int,
run_name: str,
Model: torch.nn.Module,
device: torch.device = torch.device("cpu"),
epsilon: float = 0.05,
capture_video: bool = True,
):
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, 0, capture_video, run_name)])
model = Model(envs).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()

obs, _ = envs.reset()
episodic_returns = []
while len(episodic_returns) < eval_episodes:
if random.random() < epsilon:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
q_values = model(torch.Tensor(obs).to(device))
actions = torch.argmax(q_values, dim=1).cpu().numpy()
next_obs, _, _, _, infos = envs.step(actions)
if "final_info" in infos:
for info in infos["final_info"]:
if "episode" not in info:
continue
print(f"eval_episode={len(episodic_returns)}, episodic_return={info['episode']['r']}")
episodic_returns += [info["episode"]["r"]]
obs = next_obs

return episodic_returns


if __name__ == "__main__":
from huggingface_hub import hf_hub_download

from cleanrl.dqn_munchausen import QNetwork, make_env

model_path = hf_hub_download(repo_id="cleanrl/CartPole-v1-dqn_munchausen-seed1", filename="q_network.pth")
evaluate(
model_path,
make_env,
"CartPole-v1",
eval_episodes=10,
run_name=f"eval",
Model=QNetwork,
device="cpu",
capture_video=False,
)
Loading