Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor core::iter module #56932

Merged
merged 17 commits into from
Jan 27, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
260 changes: 260 additions & 0 deletions src/libcore/iter/adapters/chain.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
use ops::Try;
use usize;
use super::super::{Iterator, DoubleEndedIterator, FusedIterator, TrustedLen};

/// An iterator that strings two iterators together.
///
/// This `struct` is created by the [`chain`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`chain`]: trait.Iterator.html#method.chain
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chain<A, B> {
a: A,
b: B,
state: ChainState,
}
impl<A, B> Chain<A, B> {
pub(in super::super) fn new(a: A, b: B) -> Chain<A, B> {
Chain { a, b, state: ChainState::Both }
}
}

// The iterator protocol specifies that iteration ends with the return value
// `None` from `.next()` (or `.next_back()`) and it is unspecified what
// further calls return. The chain adaptor must account for this since it uses
// two subiterators.
//
// It uses three states:
//
// - Both: `a` and `b` are remaining
// - Front: `a` remaining
// - Back: `b` remaining
//
// The fourth state (neither iterator is remaining) only occurs after Chain has
// returned None once, so we don't need to store this state.
#[derive(Clone, Debug)]
enum ChainState {
// both front and back iterator are remaining
Both,
// only front is remaining
Front,
// only back is remaining
Back,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> Iterator for Chain<A, B> where
A: Iterator,
B: Iterator<Item = A::Item>
{
type Item = A::Item;

#[inline]
fn next(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.a.next() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Back;
self.b.next()
}
},
ChainState::Front => self.a.next(),
ChainState::Back => self.b.next(),
}
}

#[inline]
#[rustc_inherit_overflow_checks]
fn count(self) -> usize {
match self.state {
ChainState::Both => self.a.count() + self.b.count(),
ChainState::Front => self.a.count(),
ChainState::Back => self.b.count(),
}
}

fn try_fold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R where
Self: Sized, F: FnMut(Acc, Self::Item) -> R, R: Try<Ok=Acc>
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.try_fold(accum, &mut f)?;
if let ChainState::Both = self.state {
self.state = ChainState::Back;
}
}
_ => { }
}
if let ChainState::Back = self.state {
accum = self.b.try_fold(accum, &mut f)?;
}
Try::from_ok(accum)
}

fn fold<Acc, F>(self, init: Acc, mut f: F) -> Acc
where F: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.fold(accum, &mut f);
}
_ => { }
}
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.fold(accum, &mut f);
}
_ => { }
}
accum
}

#[inline]
fn nth(&mut self, mut n: usize) -> Option<A::Item> {
match self.state {
ChainState::Both | ChainState::Front => {
for x in self.a.by_ref() {
if n == 0 {
return Some(x)
}
n -= 1;
}
if let ChainState::Both = self.state {
self.state = ChainState::Back;
}
}
ChainState::Back => {}
}
if let ChainState::Back = self.state {
self.b.nth(n)
} else {
None
}
}

#[inline]
fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool,
{
match self.state {
ChainState::Both => match self.a.find(&mut predicate) {
None => {
self.state = ChainState::Back;
self.b.find(predicate)
}
v => v
},
ChainState::Front => self.a.find(predicate),
ChainState::Back => self.b.find(predicate),
}
}

#[inline]
fn last(self) -> Option<A::Item> {
match self.state {
ChainState::Both => {
// Must exhaust a before b.
let a_last = self.a.last();
let b_last = self.b.last();
b_last.or(a_last)
},
ChainState::Front => self.a.last(),
ChainState::Back => self.b.last()
}
}

#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();

let lower = a_lower.saturating_add(b_lower);

let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None
};

(lower, upper)
}
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> DoubleEndedIterator for Chain<A, B> where
A: DoubleEndedIterator,
B: DoubleEndedIterator<Item=A::Item>,
{
#[inline]
fn next_back(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.b.next_back() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Front;
self.a.next_back()
}
},
ChainState::Front => self.a.next_back(),
ChainState::Back => self.b.next_back(),
}
}

fn try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R where
Self: Sized, F: FnMut(Acc, Self::Item) -> R, R: Try<Ok=Acc>
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.try_rfold(accum, &mut f)?;
if let ChainState::Both = self.state {
self.state = ChainState::Front;
}
}
_ => { }
}
if let ChainState::Front = self.state {
accum = self.a.try_rfold(accum, &mut f)?;
}
Try::from_ok(accum)
}

fn rfold<Acc, F>(self, init: Acc, mut f: F) -> Acc
where F: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.rfold(accum, &mut f);
}
_ => { }
}
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.rfold(accum, &mut f);
}
_ => { }
}
accum
}

}

// Note: *both* must be fused to handle double-ended iterators.
#[stable(feature = "fused", since = "1.26.0")]
impl<A, B> FusedIterator for Chain<A, B>
where A: FusedIterator,
B: FusedIterator<Item=A::Item>,
{}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A, B> TrustedLen for Chain<A, B>
where A: TrustedLen, B: TrustedLen<Item=A::Item>,
{}

Loading