-
Notifications
You must be signed in to change notification settings - Fork 8.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Rescale observation wrapper #1940
Closed
hartikainen
wants to merge
6
commits into
openai:master
from
hartikainen:rescale-observation-wrapper
Closed
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
b98705a
Implement RescaleObservation-wrapper
hartikainen 21714d3
Add tests for RescaleObservation-wrapper
hartikainen e5cf698
Add TODO about extending RescaleObservation to Dict and Tuple spaces
hartikainen e90b7ae
Add RescaleObservation attribute to gym.wrappers
hartikainen e234862
Implement Dict/Tuple observation space scaling
hartikainen 800da4e
Document and raise on non-scalar low/high and Tuple/Dict space
hartikainen File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import numpy as np | ||
|
||
import gym | ||
from gym import spaces | ||
|
||
|
||
def rescale_values(values, old_low, old_high, new_low, new_high): | ||
rescaled_values = new_low + (new_high - new_low) * ( | ||
(values - old_low) / (old_high - old_low)) | ||
rescaled_values = np.clip(rescaled_values, new_low, new_high) | ||
return rescaled_values | ||
|
||
|
||
def verify_observation_space_type(observation_space): | ||
if not isinstance(observation_space, spaces.Box): | ||
raise TypeError("Expected Box observation space. Got: {}" | ||
"".format(type(observation_space))) | ||
|
||
|
||
def verify_observation_space_bounds(observation_space): | ||
if np.any(~np.isfinite(( | ||
observation_space.low, observation_space.high))): | ||
raise ValueError( | ||
"Observation space 'low' and 'high' need to be finite." | ||
" Got: observation_space.low={}, observation_space.high={}" | ||
"".format(observation_space.low, observation_space.high)) | ||
|
||
|
||
def rescale_box_space(observation_space, low, high): | ||
shape = observation_space.shape | ||
dtype = observation_space.dtype | ||
|
||
new_low = low + np.zeros(shape, dtype=dtype) | ||
new_high = high + np.zeros(shape, dtype=dtype) | ||
|
||
observation_space = spaces.Box( | ||
low=new_low, high=new_high, shape=shape, dtype=dtype) | ||
|
||
return observation_space | ||
|
||
|
||
class RescaleObservation(gym.ObservationWrapper): | ||
def __init__(self, env, low, high): | ||
r"""Rescale observation space to a range [`low`, `high`]. | ||
|
||
For `Box` spaces, `low` and `high` can be either scalar or vector, and | ||
will be broadcasted according to numpy broadcasting rules. For `Tuple` | ||
and `Dict` spaces, both `low` and `high` are expected to be scalar. | ||
|
||
Example: | ||
>>> RescaleObservation(env, low, high).observation_space == Box(low, high) | ||
True | ||
Raises: | ||
TypeError: If `not isinstance(environment.observation_space, (Box, Tuple, Dict))`. | ||
ValueError: If either `low` or `high` is not finite. | ||
ValueError: If any of `observation_space.{low,high}` is not finite. | ||
ValueError: If `high <= low`. | ||
ValueError: If observation space is `Tuple` or `Dict` and either | ||
`low` or `high` is not scalar. | ||
""" | ||
if np.any([~np.isfinite(low), ~np.isfinite(high)]): | ||
raise ValueError( | ||
"Arguments 'low' and 'high' need to be finite." | ||
" Got: low={}, high={}".format(low, high)) | ||
|
||
if np.any(high <= low): | ||
raise ValueError("Argument `low` must be smaller than `high`" | ||
" Got: low={}, high=".format(low, high)) | ||
|
||
if (isinstance(env.observation_space, (spaces.Tuple, spaces.Dict)) | ||
and not (np.isscalar(low) and np.isscalar(high))): | ||
raise ValueError( | ||
"Arguments 'low' and 'high' need to be scalars for {} spaces." | ||
" Got: low={}, high={}".format( | ||
type(env.observation_space), low, high)) | ||
|
||
super(RescaleObservation, self).__init__(env) | ||
|
||
if isinstance(env.observation_space, spaces.Box): | ||
verify_observation_space_type(env.observation_space) | ||
verify_observation_space_bounds(env.observation_space) | ||
self.observation_space = rescale_box_space( | ||
env.observation_space, low, high) | ||
elif isinstance(env.observation_space, spaces.Tuple): | ||
for observation_space in env.observation_space.spaces: | ||
verify_observation_space_type(observation_space) | ||
verify_observation_space_bounds(observation_space) | ||
self.observation_space = spaces.Tuple([ | ||
rescale_box_space(observation_space, low, high) | ||
for observation_space | ||
in env.observation_space.spaces | ||
]) | ||
elif isinstance(env.observation_space, spaces.Dict): | ||
for observation_space in env.observation_space.spaces.values(): | ||
verify_observation_space_type(observation_space) | ||
verify_observation_space_bounds(observation_space) | ||
self.observation_space = spaces.Dict({ | ||
name: rescale_box_space(observation_space, low, high) | ||
for name, observation_space | ||
in env.observation_space.spaces.items() | ||
}) | ||
else: | ||
raise TypeError("Unsupported observation space type: {}" | ||
"".format(type(env.observation_space))) | ||
|
||
def observation(self, observation): | ||
if isinstance(self.observation_space, spaces.Box): | ||
rescaled_observation = rescale_values( | ||
observation, | ||
old_low=self.env.observation_space.low, | ||
old_high=self.env.observation_space.high, | ||
new_low=self.observation_space.low, | ||
new_high=self.observation_space.high) | ||
elif isinstance(self.observation_space, spaces.Tuple): | ||
rescaled_observation = type(observation)(( | ||
rescale_values( | ||
value, | ||
old_low=self.env.observation_space[i].low, | ||
old_high=self.env.observation_space[i].high, | ||
new_low=self.observation_space[i].low, | ||
new_high=self.observation_space[i].high) | ||
for i, value in enumerate(observation) | ||
)) | ||
elif isinstance(self.observation_space, spaces.Dict): | ||
rescaled_observation = type(observation)(( | ||
(key, rescale_values( | ||
value, | ||
old_low=self.env.observation_space[key].low, | ||
old_high=self.env.observation_space[key].high, | ||
new_low=self.observation_space[key].low, | ||
new_high=self.observation_space[key].high)) | ||
for key, value in observation.items() | ||
)) | ||
else: | ||
raise TypeError("Unsupported observation space type: {}" | ||
"".format(type(self.env.observation_space))) | ||
|
||
return rescaled_observation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
import pytest | ||
|
||
import numpy as np | ||
|
||
import gym | ||
from gym import spaces | ||
from gym.wrappers import RescaleObservation | ||
|
||
|
||
UNSCALED_BOX_SPACE = spaces.Box( | ||
shape=(2, ), | ||
low=np.array((-1.2, -0.07)), | ||
high=np.array((0.6, 0.07)), | ||
dtype=np.float32) | ||
|
||
|
||
class FakeEnvironment(gym.Env): | ||
def __init__(self, observation_space): | ||
"""Fake environment whose observation equals broadcasted action.""" | ||
self.observation_space = observation_space | ||
self.action_space = self.observation_space | ||
|
||
def reset(self): | ||
observation = self.observation_space.sample() | ||
return observation | ||
|
||
def step(self, action): | ||
observation = action | ||
reward, terminal, info = 0.0, False, {} | ||
return observation, reward, terminal, info | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
UNSCALED_BOX_SPACE, | ||
spaces.Tuple((UNSCALED_BOX_SPACE, UNSCALED_BOX_SPACE)), | ||
spaces.Dict({'box-1': UNSCALED_BOX_SPACE, 'box-2': UNSCALED_BOX_SPACE}), | ||
]) | ||
def test_rescale_observation(observation_space): | ||
new_low, new_high = -1.0, 1.0 | ||
env = FakeEnvironment(observation_space) | ||
wrapped_env = RescaleObservation(env, new_low, new_high) | ||
|
||
def verify_space_bounds(observation_space): | ||
np.testing.assert_allclose(observation_space.low, new_low) | ||
np.testing.assert_allclose(observation_space.high, new_high) | ||
|
||
if isinstance(wrapped_env.observation_space, spaces.Box): | ||
verify_space_bounds(wrapped_env.observation_space) | ||
elif isinstance(wrapped_env.observation_space, spaces.Tuple): | ||
for observation_space in wrapped_env.observation_space.spaces: | ||
verify_space_bounds(observation_space) | ||
elif isinstance(wrapped_env.observation_space, spaces.Dict): | ||
for observation_space in wrapped_env.observation_space.spaces.values(): | ||
verify_space_bounds(observation_space) | ||
else: | ||
raise ValueError | ||
|
||
seed = 0 | ||
env.seed(seed) | ||
wrapped_env.seed(seed) | ||
|
||
env.reset() | ||
wrapped_env.reset() | ||
|
||
if isinstance(wrapped_env.observation_space, spaces.Box): | ||
action = env.observation_space.low | ||
low_observation = env.step(action)[0] | ||
wrapped_low_observation = wrapped_env.step(action)[0] | ||
|
||
assert np.allclose(low_observation, env.observation_space.low) | ||
assert np.allclose( | ||
wrapped_low_observation, wrapped_env.observation_space.low) | ||
|
||
high_observation = env.step(env.observation_space.high)[0] | ||
wrapped_high_observation = wrapped_env.step(env.observation_space.high)[0] | ||
|
||
assert np.allclose(high_observation, env.observation_space.high) | ||
assert np.allclose( | ||
wrapped_high_observation, wrapped_env.observation_space.high) | ||
|
||
elif isinstance(wrapped_env.observation_space, spaces.Tuple): | ||
low_action = type(env.observation_space.spaces)( | ||
observation_space.low | ||
for observation_space in env.observation_space.spaces) | ||
|
||
low_observation = env.step(low_action)[0] | ||
wrapped_low_observation = wrapped_env.step(low_action)[0] | ||
|
||
assert np.allclose( | ||
low_observation, | ||
[o.low for o in env.observation_space.spaces]) | ||
assert np.allclose( | ||
wrapped_low_observation, | ||
[o.low for o in wrapped_env.observation_space.spaces]) | ||
|
||
high_action = type(env.observation_space.spaces)( | ||
observation_space.high | ||
for observation_space in env.observation_space.spaces) | ||
|
||
high_observation = env.step(high_action)[0] | ||
wrapped_high_observation = wrapped_env.step(high_action)[0] | ||
|
||
assert np.allclose( | ||
high_observation, | ||
[o.high for o in env.observation_space.spaces]) | ||
assert np.allclose( | ||
wrapped_high_observation, | ||
[o.high for o in wrapped_env.observation_space.spaces]) | ||
|
||
elif isinstance(wrapped_env.observation_space, spaces.Dict): | ||
low_action = type(env.observation_space.spaces)( | ||
(key, observation_space.low) | ||
for key, observation_space in env.observation_space.spaces.items()) | ||
|
||
low_observation = env.step(low_action)[0] | ||
wrapped_low_observation = wrapped_env.step(low_action)[0] | ||
|
||
assert (set(env.observation_space.spaces.keys()) | ||
== set(low_observation.keys())) | ||
assert (set(wrapped_env.observation_space.spaces.keys()) | ||
== set(low_observation.keys())) | ||
for key in env.observation_space.spaces.keys(): | ||
np.testing.assert_allclose( | ||
low_observation[key], env.observation_space[key].low) | ||
np.testing.assert_allclose( | ||
wrapped_low_observation[key], | ||
wrapped_env.observation_space[key].low) | ||
|
||
high_action = type(env.observation_space.spaces)( | ||
(key, observation_space.high) | ||
for key, observation_space in env.observation_space.spaces.items()) | ||
|
||
high_observation = env.step(high_action)[0] | ||
wrapped_high_observation = wrapped_env.step(high_action)[0] | ||
|
||
assert (set(env.observation_space.spaces.keys()) | ||
== set(high_observation.keys())) | ||
assert (set(wrapped_env.observation_space.spaces.keys()) | ||
== set(high_observation.keys())) | ||
for key in env.observation_space.spaces.keys(): | ||
np.testing.assert_allclose( | ||
high_observation[key], env.observation_space[key].high) | ||
np.testing.assert_allclose( | ||
wrapped_high_observation[key], | ||
wrapped_env.observation_space[key].high) | ||
|
||
else: | ||
raise ValueError | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
spaces.Tuple((UNSCALED_BOX_SPACE, UNSCALED_BOX_SPACE)), | ||
spaces.Dict({'box-1': UNSCALED_BOX_SPACE, 'box-2': UNSCALED_BOX_SPACE}), | ||
]) | ||
def test_raises_non_scalar_low_high(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
assert isinstance( | ||
env.observation_space, (spaces.Box, spaces.Tuple, spaces.Dict)) | ||
|
||
with pytest.raises(ValueError): | ||
RescaleObservation(env, -1.0, np.array([1.0, 1.0])) | ||
|
||
with pytest.raises(ValueError): | ||
RescaleObservation(env, np.array([-1.0, -1.0]), 1.0) | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
UNSCALED_BOX_SPACE, | ||
spaces.Tuple((UNSCALED_BOX_SPACE, UNSCALED_BOX_SPACE)), | ||
spaces.Dict({'box-1': UNSCALED_BOX_SPACE, 'box-2': UNSCALED_BOX_SPACE}), | ||
]) | ||
def test_raises_on_non_finite_low(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
assert isinstance( | ||
env.observation_space, (spaces.Box, spaces.Tuple, spaces.Dict)) | ||
|
||
with pytest.raises(ValueError): | ||
RescaleObservation(env, -float('inf'), 1.0) | ||
|
||
with pytest.raises(ValueError): | ||
RescaleObservation(env, -1.0, float('inf')) | ||
|
||
with pytest.raises(ValueError): | ||
RescaleObservation(env, -1.0, np.nan) | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
UNSCALED_BOX_SPACE, | ||
spaces.Tuple((UNSCALED_BOX_SPACE, UNSCALED_BOX_SPACE)), | ||
spaces.Dict({'box-1': UNSCALED_BOX_SPACE, 'box-2': UNSCALED_BOX_SPACE}), | ||
]) | ||
def test_raises_on_high_less_than_low(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
assert isinstance( | ||
env.observation_space, (spaces.Box, spaces.Tuple, spaces.Dict)) | ||
with pytest.raises(ValueError): | ||
RescaleObservation(env, 1.0, 1.0) | ||
with pytest.raises(ValueError): | ||
RescaleObservation(env, 1.0, -1.0) | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
UNSCALED_BOX_SPACE, | ||
spaces.Tuple((UNSCALED_BOX_SPACE, UNSCALED_BOX_SPACE)), | ||
spaces.Dict({'box-1': UNSCALED_BOX_SPACE, 'box-2': UNSCALED_BOX_SPACE}), | ||
]) | ||
def test_raises_on_high_equals_low(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
assert isinstance( | ||
env.observation_space, (spaces.Box, spaces.Tuple, spaces.Dict)) | ||
with pytest.raises(ValueError): | ||
RescaleObservation(env, 1.0, 1.0) | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
spaces.Discrete(10), | ||
spaces.Tuple((spaces.Discrete(5), spaces.Discrete(10))), | ||
spaces.Tuple(( | ||
spaces.Discrete(5), | ||
spaces.Box(low=np.array((0.0, 0.0)), high=np.array((1.0, 1.0))))), | ||
spaces.Dict({ | ||
'discrete-5': spaces.Discrete(5), | ||
'discrete-10': spaces.Discrete(10), | ||
}), | ||
spaces.Dict({ | ||
'discrete': spaces.Discrete(5), | ||
'box': spaces.Box(low=np.array((0.0, 0.0)), high=np.array((1.0, 1.0))), | ||
}), | ||
]) | ||
def test_raises_on_non_box_space(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
with pytest.raises(TypeError): | ||
RescaleObservation(env, -1.0, 1.0) | ||
|
||
|
||
@pytest.mark.parametrize("observation_space", [ | ||
spaces.Box(low=np.array((0.0, 0.0)), high=np.array((1.0, float('inf')))), | ||
spaces.Box(low=np.array((0.0, -float('inf'))), high=np.array((1.0, 1.0))), | ||
spaces.Tuple(( | ||
spaces.Box(low=np.array((0.0, -1.0)), high=np.array((1.0, 1.0))), | ||
spaces.Box(low=np.array((0.0, -1.0)), high=np.array((1.0, float('inf')))), | ||
)), | ||
spaces.Dict({ | ||
'box-1': spaces.Box(low=np.array((0.0, -1.0)), high=np.array((1.0, 1.0))), | ||
'box-2': spaces.Box(low=np.array((0.0, -float('inf'))), high=np.array((1.0, 1.0))), | ||
}), | ||
]) | ||
def test_raises_on_non_finite_space(observation_space): | ||
env = FakeEnvironment(observation_space) | ||
with pytest.raises(ValueError): | ||
RescaleObservation(env, -1.0, 1.0) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could you specify in the docstring that elements of Tuple or Dict space are expected to be Box?