Skip to content

Code for our 2019 CogSci paper "Learning deep taxonomic priors for concept learning from few positive examples."

License

Notifications You must be signed in to change notification settings

eringrant/cogsci-2019-concept-learning

Repository files navigation

cogsci-2019-concept-learning

Code for our 2019 CogSci paper "Learning deep taxonomic priors for concept learning from few positive examples." To cite the work that this code is associated with, use:

@inproceedings{grant2019learning,
  title={Learning deep taxonomic priors for concept learning from few positive examples},
  author={Grant, Erin and Peterson, Joshua C and Griffiths, Thomas L},
  booktitle={Proceedings of the Annual Conference of the Cognitive Science Society},
  year={2019}
}

tl;dr

  1. Install the package. (Remember to conda activate cogsci-2019-concept-learning if necessary.)

  2. Run the following commands to set up NLTK:

python -c "import nltk; nltk.download('wordnet'); nltk.download('omw-1.4')"
  1. TODO(eringrant): Document how to get ImageNet images by synset.

  2. A training and evaluation run on the human data can then be run via:

scripts/run_human_comp.sh /tmp /tmp PATH_TO_IMAGENET

Installation

Option: Conda install

To install via Conda, do:

git clone [email protected]:eringrant/cogsci-2019-concept-learning.git
cd cogsci-2019-concept-learning
conda env create --file environment.yml

The Conda environment can then be activated via conda activate cogsci-2019-concept-learning.

Option: pip install

To install via pip, do:

git clone [email protected]:eringrant/cogsci-2019-concept-learning.git
cd cogsci-2019-concept-learning
pip install -e .

About

Code for our 2019 CogSci paper "Learning deep taxonomic priors for concept learning from few positive examples."

Resources

License

Stars

Watchers

Forks