-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Mapped bidirectional lstm & unit test
Signed-off-by: Chen Xin <[email protected]>
- Loading branch information
Chen Xin
committed
Aug 16, 2022
1 parent
96d186c
commit 5130724
Showing
4 changed files
with
639 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
/**************************************************************************** | ||
* | ||
* Copyright (c) 2022 Vivante Corporation | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a | ||
* copy of this software and associated documentation files (the "Software"), | ||
* to deal in the Software without restriction, including without limitation | ||
* the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
* and/or sell copies of the Software, and to permit persons to whom the | ||
* Software is furnished to do so, subject to the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
* DEALINGS IN THE SOFTWARE. | ||
* | ||
*****************************************************************************/ | ||
#ifndef TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_ | ||
#define TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_ | ||
|
||
#include "tim/vx/operation.h" | ||
namespace tim { | ||
namespace vx { | ||
namespace ops { | ||
|
||
class BidirectionalSequenceLstm : public Operation { | ||
public: | ||
enum ActivationType { | ||
kNONE = 0, | ||
kRELU = 1, | ||
kRELU1 = 2, | ||
kRELU6 = 3, | ||
kTANH = 4, | ||
kSIGMOID = 6, | ||
kHARDSIGMOID = 31, /* temporary use 31 */ | ||
}; | ||
BidirectionalSequenceLstm( | ||
Graph* graph, float cell_clip, float proj_clip, | ||
ActivationType act_type, float forget_bias, bool time_major = false, | ||
ActivationType recurrent_act_type = ActivationType::kSIGMOID, | ||
bool return_sequences = false /*False: only return last state*/ | ||
); | ||
|
||
std::shared_ptr<Operation> Clone( | ||
std::shared_ptr<Graph>& graph) const override; | ||
|
||
protected: | ||
const float cell_clip_; | ||
const float proj_clip_; | ||
const ActivationType act_type_; | ||
const float forget_bias_; | ||
const bool time_major_; | ||
const ActivationType recurrent_act_type_; | ||
const bool return_sequences_; | ||
}; | ||
|
||
} // namespace ops | ||
} // namespace vx | ||
} // namespace tim | ||
|
||
#endif /* TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_ */ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
/**************************************************************************** | ||
* | ||
* Copyright (c) 2022 Vivante Corporation | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a | ||
* copy of this software and associated documentation files (the "Software"), | ||
* to deal in the Software without restriction, including without limitation | ||
* the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
* and/or sell copies of the Software, and to permit persons to whom the | ||
* Software is furnished to do so, subject to the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
* DEALINGS IN THE SOFTWARE. | ||
* | ||
*****************************************************************************/ | ||
#include "tim/vx/ops/bidirectional_sequence_lstm.h" | ||
#include "tim/vx/ops/unidirectional_sequence_lstm.h" | ||
#include "vsi_nn_pub.h" | ||
#include "op_impl.h" | ||
|
||
#include <array> | ||
namespace tim { | ||
namespace vx { | ||
namespace ops { | ||
|
||
class BidirectionalSequenceLstmImpl : public OpImpl { | ||
public: | ||
enum { | ||
BI_LSTM_INPUT_INPUT = 0, | ||
|
||
BI_LSTM_FW_INPUT_WEIGHT_I2I = 1, | ||
BI_LSTM_FW_INPUT_WEIGHT_I2F = 2, | ||
BI_LSTM_FW_INPUT_WEIGHT_I2C = 3, | ||
BI_LSTM_FW_INPUT_WEIGHT_I2O = 4, | ||
|
||
BI_LSTM_FW_INPUT_WEIGHT_R2I = 5, | ||
BI_LSTM_FW_INPUT_WEIGHT_R2F = 6, | ||
BI_LSTM_FW_INPUT_WEIGHT_R2C = 7, | ||
BI_LSTM_FW_INPUT_WEIGHT_R2O = 8, | ||
|
||
BI_LSTM_FW_INPUT_WEIGHT_C2I = 9, | ||
BI_LSTM_FW_INPUT_WEIGHT_C2F = 10, | ||
BI_LSTM_FW_INPUT_WEIGHT_C2O = 11, | ||
|
||
BI_LSTM_FW_INPUT_BIAS_I = 12, | ||
BI_LSTM_FW_INPUT_BIAS_F = 13, | ||
BI_LSTM_FW_INPUT_BIAS_C = 14, | ||
BI_LSTM_FW_INPUT_BIAS_O = 15, | ||
|
||
BI_LSTM_FW_INPUT_WEIGHT_PROJ = 16, | ||
BI_LSTM_FW_INPUT_BIAS_PROJ = 17, | ||
|
||
BI_LSTM_BW_INPUT_WEIGHT_I2I = 18, | ||
BI_LSTM_BW_INPUT_WEIGHT_I2F = 19, | ||
BI_LSTM_BW_INPUT_WEIGHT_I2C = 20, | ||
BI_LSTM_BW_INPUT_WEIGHT_I2O = 21, | ||
|
||
BI_LSTM_BW_INPUT_WEIGHT_R2I = 22, | ||
BI_LSTM_BW_INPUT_WEIGHT_R2F = 23, | ||
BI_LSTM_BW_INPUT_WEIGHT_R2C = 24, | ||
BI_LSTM_BW_INPUT_WEIGHT_R2O = 25, | ||
|
||
BI_LSTM_BW_INPUT_WEIGHT_C2I = 26, | ||
BI_LSTM_BW_INPUT_WEIGHT_C2F = 27, | ||
BI_LSTM_BW_INPUT_WEIGHT_C2O = 28, | ||
|
||
BI_LSTM_BW_INPUT_BIAS_I = 29, | ||
BI_LSTM_BW_INPUT_BIAS_F = 30, | ||
BI_LSTM_BW_INPUT_BIAS_C = 31, | ||
BI_LSTM_BW_INPUT_BIAS_O = 32, | ||
|
||
BI_LSTM_BW_INPUT_WEIGHT_PROJ = 33, | ||
BI_LSTM_BW_INPUT_BIAS_PROJ = 34, | ||
|
||
BI_LSTM_FW_INPUT_H_STATE = 35, | ||
BI_LSTM_FW_INPUT_C_STATE = 36, | ||
|
||
BI_LSTM_BW_INPUT_H_STATE = 37, | ||
BI_LSTM_BW_INPUT_C_STATE = 38, | ||
|
||
BI_LSTM_AUX_INPUT = 39, | ||
|
||
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2I = 40, | ||
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2F = 41, | ||
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2C = 42, | ||
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2O = 43, | ||
|
||
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2I = 44, | ||
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2F = 45, | ||
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2C = 46, | ||
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2O = 47, | ||
|
||
BI_LSTM_FW_INPUT_LAYERNORM_I = 48, | ||
BI_LSTM_FW_INPUT_LAYERNORM_F = 49, | ||
BI_LSTM_FW_INPUT_LAYERNORM_C = 50, | ||
BI_LSTM_FW_INPUT_LAYERNORM_O = 51, | ||
|
||
BI_LSTM_BW_INPUT_LAYERNORM_I = 52, | ||
BI_LSTM_BW_INPUT_LAYERNORM_F = 53, | ||
BI_LSTM_BW_INPUT_LAYERNORM_C = 54, | ||
BI_LSTM_BW_INPUT_LAYERNORM_O = 55, | ||
|
||
INPUT_CNT, | ||
|
||
BI_LSTM_FW_OUTPUT_OUTPUT = 0, | ||
BI_LSTM_FW_OUTPUT_H_STATE = 1, | ||
BI_LSTM_FW_OUTPUT_C_STATE = 2, | ||
|
||
BI_LSTM_BW_OUTPUT_OUTPUT = 3, | ||
BI_LSTM_BW_OUTPUT_H_STATE = 4, | ||
BI_LSTM_BW_OUTPUT_C_STATE = 5, | ||
|
||
OUTPUT_CNT | ||
}; | ||
|
||
BidirectionalSequenceLstmImpl(Graph* graph, int input_cnt, int output_cnt, | ||
DataLayout layout = DataLayout::ANY) | ||
: OpImpl(graph, -1, input_cnt, output_cnt, layout) { | ||
lstm_forward_ = graph->CreateOperation<UnidirectionalSequenceLstm>( | ||
0.0, 0.0, UnidirectionalSequenceLstm::kTANH, 0.0, false, | ||
UnidirectionalSequenceLstm::kSIGMOID, true); | ||
lstm_backward_ = | ||
graph->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>( | ||
0.0, 0.0, UnidirectionalSequenceLstm::kTANH, 0.0, false, | ||
UnidirectionalSequenceLstm::kSIGMOID, true); | ||
} | ||
|
||
~BidirectionalSequenceLstmImpl() {} | ||
|
||
BidirectionalSequenceLstmImpl& BindInput( | ||
const std::shared_ptr<Tensor>& tensor) override { | ||
in_tensors_[input_tensor_index] = tensor; | ||
|
||
if (this->input_tensor_index == INPUT_CNT - 1) { | ||
// Get all input tensor | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_H_STATE]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_C_STATE]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2I]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2F]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2C]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2O]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2I]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2F]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2C]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2O]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2I]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2F]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2O]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_I]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_F]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_C]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_O]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_PROJ]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_PROJ]); | ||
|
||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_I]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_F]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_C]); | ||
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_O]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_H_STATE]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_C_STATE]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2I]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2F]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2C]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2O]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2I]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2F]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2C]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2O]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2I]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2F]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2O]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_I]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_F]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_C]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_O]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_PROJ]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_PROJ]); | ||
|
||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_I]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_F]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_C]); | ||
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_O]); | ||
} | ||
this->input_tensor_index++; | ||
return *this; | ||
} | ||
|
||
BidirectionalSequenceLstmImpl& BindOutput( | ||
const std::shared_ptr<Tensor>& tensor) override { | ||
out_tensors_[output_tensor_index] = tensor; | ||
|
||
if (this->output_tensor_index == OUTPUT_CNT - 1) { | ||
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_OUTPUT]); | ||
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_H_STATE]); | ||
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_C_STATE]); | ||
|
||
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_OUTPUT]); | ||
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_H_STATE]); | ||
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_C_STATE]); | ||
} | ||
this->output_tensor_index++; | ||
return *this; | ||
} | ||
|
||
vsi_nn_node_t* node() override { return nullptr; } | ||
|
||
std::vector<std::shared_ptr<Tensor>> InputsTensor() override { | ||
return inputs_tensor_; | ||
} | ||
std::vector<std::shared_ptr<Tensor>> OutputsTensor() override { | ||
return outputs_tensor_; | ||
} | ||
|
||
private: | ||
std::shared_ptr<tim::vx::Operation> lstm_forward_; | ||
std::shared_ptr<tim::vx::Operation> lstm_backward_; | ||
|
||
std::array<std::shared_ptr<tim::vx::Tensor>, INPUT_CNT> in_tensors_; | ||
std::array<std::shared_ptr<tim::vx::Tensor>, OUTPUT_CNT> out_tensors_; | ||
}; | ||
|
||
BidirectionalSequenceLstm::BidirectionalSequenceLstm( | ||
Graph* graph, float cell_clip, float proj_clip, ActivationType act_type, | ||
float forget_bias, bool time_major, ActivationType recurrent_act_type, | ||
bool return_sequences) | ||
: cell_clip_(cell_clip), | ||
proj_clip_(proj_clip), | ||
act_type_(act_type), | ||
forget_bias_(forget_bias), | ||
time_major_(time_major), | ||
recurrent_act_type_(recurrent_act_type), | ||
return_sequences_(return_sequences) { | ||
impl_ = std::make_unique<BidirectionalSequenceLstmImpl>(graph, 0, 0, | ||
DataLayout::ANY); | ||
} | ||
|
||
std::shared_ptr<Operation> BidirectionalSequenceLstm::Clone( | ||
std::shared_ptr<Graph>& graph) const { | ||
return graph->CreateOperation<BidirectionalSequenceLstm>( | ||
this->cell_clip_, this->proj_clip_, this->act_type_, this->forget_bias_, | ||
this->time_major_, this->recurrent_act_type_, this->return_sequences_); | ||
} | ||
|
||
} // namespace ops | ||
} // namespace vx | ||
} // namespace tim |
Oops, something went wrong.