-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add fake_quantize_op. #11359
Merged
Merged
Add fake_quantize_op. #11359
Changes from all commits
Commits
Show all changes
15 commits
Select commit
Hold shift + click to select a range
e5954c0
quantize
achao2013 e26c2df
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
achao2013 8bee0f4
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
achao2013 d3abd23
test
achao2013 15cc228
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
achao2013 65819c9
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
achao2013 26ada02
Small fix
qingqing01 d6d03ea
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 051593a
unitest fake_quantize
achao2013 ad3dea4
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
achao2013 f8a2b7f
add new line
achao2013 609701b
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 ca7b759
Merge branch 'quant' of https://github.com/achao2013/Paddle into quant
qingqing01 9926d46
Revert convert_protobin.sh.
qingqing01 ce3c4f7
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/fake_quantize_op.h" | ||
#include <string> | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class FakeQuantizeOp : public framework::OperatorWithKernel { | ||
public: | ||
FakeQuantizeOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: OperatorWithKernel(type, inputs, outputs, attrs) {} | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), | ||
"Input(X) of FakeQuantizeOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
"Output(Out) of FakeQuantizeOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("OutMovingScale"), | ||
"OutMovingScale(Out) of FakeQuantizeOp should not be null"); | ||
// if (ctx->HasInput("InMovingScale")) { | ||
ctx->SetOutputDim("OutMovingScale", ctx->GetInputDim("InMovingScale")); | ||
//} | ||
// if (ctx->HasInput("InScales")) { | ||
PADDLE_ENFORCE(ctx->HasOutput("OutScales"), | ||
"OutScales(Out) of FakeQuantizeOp should not be null"); | ||
ctx->SetOutputDim("OutScales", ctx->GetInputDim("InScales")); | ||
// PADDLE_ENFORCE_EQ(ctx->Inputs("InScales")[0], | ||
// ctx->Outputs("OutScales")[0], | ||
// "Mean and MeanOut should share the same memory"); | ||
//} | ||
ctx->SetOutputDim("Out", ctx->GetInputDim("X")); | ||
ctx->ShareLoD("X", /*->*/ "Out"); | ||
} | ||
}; | ||
|
||
class FakeQuantizeOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor) Input tensor of scale operator."); | ||
AddInput("InScales", "(Tensor) scale buffer, used in static quantization.") | ||
.AsDispensable(); | ||
AddInput("InMovingScale", "Last scale, used in static quantization.") | ||
.AsDispensable(); | ||
AddInput("InCurrentIter", | ||
"Last iteration number, used in static quantization.") | ||
.AsDispensable(); | ||
AddOutput("Out", "(Tensor) Output of quantized low level tensor."); | ||
AddOutput("OutScales", | ||
"(Tensor) scale buffer, used in static quantization.") | ||
.AsDispensable(); | ||
AddOutput("OutMovingScale", " Current scale"); | ||
AddOutput("OutCurrentIter", "Current iteration number.").AsDispensable(); | ||
AddAttr<std::string>("quantize_type", | ||
"(string, default abs_max)" | ||
"The scaling tpe of the quantize operator.") | ||
.SetDefault("abs_max"); | ||
AddAttr<int>("window_size", "(int, default 10000)").SetDefault(10000); | ||
AddAttr<int>("bit_length", "(int, default 8)") | ||
.SetDefault(8) | ||
.AddCustomChecker([](const int &bit_length) { | ||
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16, | ||
"'bit_length' should be between 1 and 16."); | ||
}); | ||
AddAttr<bool>("is_test", "").SetDefault(false); | ||
AddComment(R"DOC( | ||
FakeQuantize operator | ||
|
||
quantize_type = abs_max: | ||
|
||
$$scale = max(abs(x))$$ | ||
|
||
quantize_type = range_abs_max: | ||
|
||
$$scale = max(max(abs(x)), history_abs_max)$$ | ||
|
||
quantize_type = moving_average_abs_max: | ||
|
||
$$scale = 0.1*scale+0.9*new_abs_max)$$ | ||
|
||
$$Out = scale*X$$ | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OPERATOR(fake_quantize, ops::FakeQuantizeOp, ops::FakeQuantizeOpMaker, | ||
paddle::framework::EmptyGradOpMaker); | ||
REGISTER_OP_CPU_KERNEL( | ||
fake_quantize, | ||
ops::FakeQuantizeKernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::FakeQuantizeKernel<paddle::platform::CPUDeviceContext, double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <string> | ||
#include "paddle/fluid/operators/fake_quantize_op.h" | ||
#include "paddle/fluid/platform/cuda_primitives.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename T> | ||
__global__ void FindAbsMaxKernel(const int n, const T* in, T* out) { | ||
int bid = threadIdx.x + blockIdx.x * blockDim.x; | ||
int tid = threadIdx.x; | ||
|
||
extern __shared__ T shared_max_data[]; | ||
if (gridDim.x > 1) { | ||
shared_max_data[tid] = T(0); | ||
for (int i = bid; i < n; i += blockDim.x * gridDim.x) { | ||
T tmp = fabs(in[i]); | ||
if (tmp > shared_max_data[tid]) { | ||
shared_max_data[tid] = tmp; | ||
} | ||
} | ||
} else { | ||
if (bid < n) { | ||
shared_max_data[tid] = fabs(in[bid]); | ||
} else { | ||
shared_max_data[tid] = T(0); | ||
} | ||
} | ||
__syncthreads(); | ||
|
||
for (int i = blockDim.x / 2; i > 0; i >>= 1) { | ||
if (tid < i && shared_max_data[tid] < shared_max_data[tid + i]) { | ||
shared_max_data[tid] = shared_max_data[tid + i]; | ||
} | ||
__syncthreads(); | ||
} | ||
if (tid == 0) { | ||
out[blockIdx.x] = shared_max_data[0]; | ||
} | ||
} | ||
|
||
float FindAbsMaxGpu(const platform::CUDADeviceContext& ctx, const float* array, | ||
int length) { | ||
float host_max; | ||
int kNumTheads = 1024; | ||
int gridDimx = (kNumTheads - 1 + length) / kNumTheads; | ||
gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx; | ||
framework::Tensor t; | ||
float* device_max = t.mutable_data<float>(framework::make_ddim({gridDimx}), | ||
platform::CUDAPlace()); | ||
FindAbsMaxKernel<float><<<gridDimx, kNumTheads, kNumTheads * sizeof(float), | ||
ctx.stream()>>>(length, array, device_max); | ||
FindAbsMaxKernel< | ||
float><<<1, kNumTheads, kNumTheads * sizeof(float), ctx.stream()>>>( | ||
gridDimx, device_max, device_max); | ||
PADDLE_ENFORCE_EQ( | ||
cudaMemcpy(&host_max, device_max, sizeof(float), cudaMemcpyDeviceToHost), | ||
cudaSuccess, "cudaMemcpy failed"); | ||
return host_max; | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe can use thrust::reduce + thrust::max_element to find the maximum value for more simply. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this will be slow |
||
|
||
template <typename T> | ||
__global__ void ApplySaturateKernel(const int n, const T* in, T* out, | ||
int* num_saturate, const T min, | ||
const T max) { | ||
int bid = threadIdx.x + blockIdx.x * blockDim.x; | ||
int tid = threadIdx.x; | ||
|
||
extern __shared__ int shared_count[]; | ||
shared_count[tid] = 0; | ||
for (int i = bid; i < n; i += blockDim.x * gridDim.x) { | ||
if (in[i] > max) { | ||
out[i] = max; | ||
shared_count[tid] += 1; | ||
} else if (in[i] < min) { | ||
out[i] = min; | ||
shared_count[tid] += 1; | ||
} else { | ||
out[i] = in[i]; | ||
} | ||
} | ||
__syncthreads(); | ||
|
||
for (int i = blockDim.x / 2; i > 0; i >>= 1) { | ||
if (tid < i) { | ||
shared_count[tid] += shared_count[tid + i]; | ||
} | ||
__syncthreads(); | ||
} | ||
if (tid == 0) { | ||
num_saturate[blockIdx.x] = shared_count[0]; | ||
} | ||
} | ||
|
||
template <typename T> | ||
__global__ void ReduceKernel(const int n, const T* in, T* out) { | ||
int tid = threadIdx.x; | ||
extern __shared__ T shared_sum[]; | ||
if (tid < n) { | ||
shared_sum[tid] = in[tid]; | ||
} else { | ||
shared_sum[tid] = T(0); | ||
} | ||
__syncthreads(); | ||
// blockDim.x must >= n | ||
for (int i = (n + 1) / 2; i > 0; i >>= 1) { | ||
if (tid < i) { | ||
shared_sum[tid] += shared_sum[tid + i]; | ||
} | ||
__syncthreads(); | ||
} | ||
if (tid == 0) { | ||
out[0] = shared_sum[0]; | ||
} | ||
} | ||
|
||
template <typename T> | ||
int ApplySaturateGpu(const platform::CUDADeviceContext& ctx, const int n, | ||
const T* in, T* out, const T min, const T max) { | ||
int host_num_saturate; | ||
int kNumTheads = 1024; | ||
int gridDimx = (n + kNumTheads - 1) / kNumTheads; | ||
gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx; | ||
framework::Tensor t; | ||
int* device_num_saturate = t.mutable_data<int>( | ||
framework::make_ddim({gridDimx}), platform::CUDAPlace()); | ||
ApplySaturateKernel< | ||
T><<<gridDimx, kNumTheads, kNumTheads * sizeof(T), ctx.stream()>>>( | ||
n, in, out, device_num_saturate, min, max); | ||
ReduceKernel<int><<<1, kNumTheads, kNumTheads * sizeof(T), ctx.stream()>>>( | ||
gridDimx, device_num_saturate, device_num_saturate); | ||
PADDLE_ENFORCE_EQ(cudaSuccess, | ||
cudaMemcpy(&host_num_saturate, device_num_saturate, | ||
sizeof(int), cudaMemcpyDeviceToHost), | ||
"cudaMemcpy failed"); | ||
return host_num_saturate; | ||
} | ||
|
||
template <typename DeviceContext, typename T> | ||
class FakeQuantizeCUDAKernel : public framework::OpKernel<T> { | ||
public: | ||
T FindRangeAbsMax(const platform::CUDADeviceContext& ctx, | ||
framework::Tensor* scale_list, framework::Tensor* out_scale, | ||
const T& cur_scale, int window_size, | ||
int current_iter) const { | ||
T* sl = scale_list->mutable_data<T>(platform::CPUPlace()); | ||
T remove_tmp = sl[current_iter]; | ||
sl[current_iter] = cur_scale; | ||
T& max_scale = out_scale->mutable_data<T>(platform::CPUPlace())[0]; | ||
if (max_scale < cur_scale) { | ||
max_scale = cur_scale; | ||
} else if (fabs(remove_tmp - max_scale) < 1e-6) { | ||
int size = (current_iter > window_size) ? window_size : current_iter; | ||
max_scale = T(FindAbsMaxGpu(ctx, scale_list->data<float>(), size)); | ||
} | ||
return max_scale; | ||
} | ||
|
||
T FindMovingAverageAbsMmax(framework::Tensor* in_scale, | ||
framework::Tensor* out_scale, | ||
const T& cur_scale) const { | ||
T* ins = in_scale->mutable_data<T>(platform::CPUPlace()); | ||
T* outs = out_scale->mutable_data<T>(platform::CPUPlace()); | ||
outs[0] = 0.9 * cur_scale + 0.1 * ins[0]; | ||
return T(outs[0]); | ||
} | ||
|
||
virtual void Compute(const framework::ExecutionContext& context) const { | ||
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()), | ||
"This kernel only runs on GPU device."); | ||
auto& device_ctx = context.cuda_device_context(); | ||
auto* tensor = context.Output<framework::Tensor>("Out"); | ||
auto* in = context.Input<framework::Tensor>("X"); | ||
const bool is_test = context.Attr<bool>("is_test"); | ||
tensor->mutable_data<T>(in->place()); | ||
context.Output<framework::Tensor>("OutMovingScale") | ||
->mutable_data<T>( | ||
context.Input<framework::Tensor>("InMovingScale")->place()); | ||
auto quantize_type = | ||
static_cast<std::string>(context.Attr<std::string>("quantize_type")); | ||
if (quantize_type == std::string("range_abs_max")) { | ||
context.Output<framework::Tensor>("OutScales") | ||
->mutable_data<T>( | ||
context.Input<framework::Tensor>("InScales")->place()); | ||
context.Output<framework::Tensor>("OutCurrentIter") | ||
->mutable_data<T>( | ||
context.Input<framework::Tensor>("InCurrentIter")->place()); | ||
} | ||
|
||
T scale = T(1); | ||
int window_size = context.Attr<int>("window_size"); | ||
T bin_cnt = (T)((1 << (context.Attr<int>("bit_length") - 1)) - 1); | ||
if (quantize_type == std::string("abs_max")) { | ||
auto* saving_scale = context.Output<framework::Tensor>("OutMovingScale"); | ||
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel()); | ||
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale; | ||
|
||
auto& device_ctx = context.template device_context<DeviceContext>(); | ||
auto* scale_list = context.Output<framework::Tensor>("OutScales"); | ||
math::SetConstant<DeviceContext, T> scalar; | ||
scale_list->mutable_data<T>(context.GetPlace()); | ||
scalar(device_ctx, scale_list, static_cast<T>(0)); | ||
auto* iter = context.Output<framework::Tensor>("OutCurrentIter"); | ||
iter->mutable_data<T>(context.GetPlace()); | ||
scalar(device_ctx, iter, static_cast<T>(0)); | ||
} else if (quantize_type == std::string("range_abs_max")) { | ||
auto* moving_scale = const_cast<framework::Tensor*>( | ||
context.Input<framework::Tensor>("InMovingScale")); | ||
if (is_test) { | ||
scale = moving_scale->mutable_data<T>(platform::CPUPlace())[0]; | ||
} else { | ||
auto* it = const_cast<framework::Tensor*>( | ||
context.Input<framework::Tensor>("InCurrentIter")); | ||
auto* iter = context.Output<framework::Tensor>("OutCurrentIter"); | ||
int* last_iter = it->mutable_data<int>(platform::CPUPlace()); | ||
int* current_iter = iter->mutable_data<int>(platform::CPUPlace()); | ||
auto* scale_list = context.Output<framework::Tensor>("OutScales"); | ||
auto* saving_scale = | ||
context.Output<framework::Tensor>("OutMovingScale"); | ||
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel()); | ||
scale = FindRangeAbsMax(device_ctx, scale_list, saving_scale, scale, | ||
window_size, current_iter[0]); | ||
(*current_iter) = (*last_iter) + 1; | ||
} | ||
} else if (quantize_type == std::string("moving_average_abs_max")) { | ||
auto* moving_scale = const_cast<framework::Tensor*>( | ||
context.Input<framework::Tensor>("InMovingScale")); | ||
if (is_test) { | ||
scale = moving_scale->mutable_data<T>(platform::CPUPlace())[0]; | ||
} else { | ||
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel()); | ||
auto* saving_scale = | ||
context.Output<framework::Tensor>("OutMovingScale"); | ||
scale = FindMovingAverageAbsMmax( | ||
const_cast<framework::Tensor*>(moving_scale), saving_scale, scale); | ||
} | ||
} | ||
|
||
ApplySaturateGpu<T>(device_ctx, in->numel(), in->data<T>(), | ||
tensor->mutable_data<T>(in->place()), -scale, scale); | ||
scale = bin_cnt / scale; | ||
|
||
auto& dev = | ||
*context.template device_context<DeviceContext>().eigen_device(); | ||
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor); | ||
auto eigen_in = framework::EigenVector<T>::Flatten(*tensor); | ||
eigen_out.device(dev) = (scale * eigen_in).round(); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OP_CUDA_KERNEL(fake_quantize, | ||
paddle::operators::FakeQuantizeCUDAKernel< | ||
paddle::platform::CUDADeviceContext, float>, | ||
paddle::operators::FakeQuantizeCUDAKernel< | ||
paddle::platform::CUDADeviceContext, double>); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please remove the commented lines.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the comment is for test of python , the commented lines is used for train