-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update the location of if not paddle.framework.use_pir_api()
- Loading branch information
Showing
2 changed files
with
217 additions
and
10 deletions.
There are no files selected for viewing
207 changes: 207 additions & 0 deletions
207
test/legacy_test/.ipynb_checkpoints/test_nn_functional_hot_op-checkpoint.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
from op_test import OpTest | ||
|
||
import paddle | ||
from paddle import base | ||
from paddle.base import core | ||
from paddle.nn import functional | ||
from paddle.pir_utils import test_with_pir_api | ||
|
||
|
||
class TestOneHotOp(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) | ||
|
||
out = np.zeros(shape=(np.prod(x.shape), depth)).astype('float32') | ||
|
||
for i in range(np.prod(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_attr(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.prod(x.shape[:-1]), 1, depth)).astype( | ||
'float32' | ||
) | ||
|
||
for i in range(np.prod(x.shape)): | ||
out[i, 0, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_default_dtype(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) | ||
|
||
out = np.zeros(shape=(np.prod(x.shape), depth)).astype('float32') | ||
|
||
for i in range(np.prod(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_default_dtype_attr(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.prod(x.shape[:-1]), 1, depth)).astype( | ||
'float32' | ||
) | ||
|
||
for i in range(np.prod(x.shape)): | ||
out[i, 0, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOpApi(unittest.TestCase): | ||
@test_with_pir_api | ||
def test_api(self): | ||
main = paddle.static.Program() | ||
startup = paddle.static.Program() | ||
with paddle.static.program_guard(main, startup): | ||
num_classes = 10 | ||
label = paddle.static.data( | ||
name="label", shape=[-1, 1], dtype="int64" | ||
) | ||
one_hot_label = functional.one_hot(x=label, num_classes=num_classes) | ||
|
||
place = base.CPUPlace() | ||
label_data = np.array( | ||
[np.random.randint(0, 10 - 1) for i in range(6)] | ||
).reshape([6, 1]) | ||
label_data = label_data.astype('int64') | ||
|
||
exe = base.Executor(place) | ||
exe.run(startup) | ||
ret = exe.run( | ||
feed={ | ||
'label': label_data, | ||
}, | ||
fetch_list=[one_hot_label], | ||
return_numpy=False, | ||
) | ||
|
||
@test_with_pir_api | ||
def test_api_with_depthTensor(self): | ||
main = paddle.static.Program() | ||
startup = paddle.static.Program() | ||
with paddle.static.program_guard(main, startup): | ||
num_classes = paddle.assign(np.array([10], dtype=np.int32)) | ||
label = paddle.static.data( | ||
name="label", shape=[-1, 1], dtype="int64" | ||
) | ||
one_hot_label = functional.one_hot(x=label, num_classes=num_classes) | ||
|
||
place = base.CPUPlace() | ||
label_data = np.array( | ||
[np.random.randint(0, 10 - 1) for i in range(6)] | ||
).reshape([6, 1]) | ||
label_data = label_data.astype('int64') | ||
|
||
exe = base.Executor(place) | ||
exe.run(startup) | ||
ret = exe.run( | ||
feed={ | ||
'label': label_data, | ||
}, | ||
fetch_list=[one_hot_label], | ||
return_numpy=False, | ||
) | ||
|
||
def test_api_with_dygraph(self): | ||
num_classes = 10 | ||
label = np.array( | ||
[np.random.randint(0, num_classes - 1) for i in range(6)] | ||
).reshape([6, 1]) | ||
with base.dygraph.guard(): | ||
one_hot_label = functional.one_hot( | ||
x=paddle.to_tensor(label), num_classes=num_classes | ||
) | ||
|
||
|
||
class BadInputTestOnehotV2(unittest.TestCase): | ||
def test_error(self): | ||
with base.program_guard(base.Program()): | ||
|
||
def test_bad_x(): | ||
label = paddle.static.data( | ||
name="label", | ||
shape=[4], | ||
dtype="float32", | ||
) | ||
|
||
if not paddle.framework.use_pir_api(): | ||
label.desc.set_need_check_feed(False) | ||
one_hot_label = functional.one_hot(x=label, num_classes=4) | ||
|
||
self.assertRaises(TypeError, test_bad_x) | ||
|
||
|
||
if __name__ == '__main__': | ||
paddle.enable_static() | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters