You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO 02-21 04:43:51 __init__.py:207] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.31
Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-2.4.3.3.kwai.x86_64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
Nvidia driver version: 535.54.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 57 bits virtual
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Platinum 8352Y CPU @ 2.20GHz
Stepping: 6
CPU MHz: 2800.017
CPU max MHz: 3400.0000
CPU min MHz: 800.0000
BogoMIPS: 4400.00
Virtualization: VT-x
L1d cache: 3 MiB
L1i cache: 2 MiB
L2 cache: 80 MiB
L3 cache: 96 MiB
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.49.0.dev0
[pip3] triton==3.1.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.1 pypi_0 pypi
[conda] torch 2.5.1 pypi_0 pypi
[conda] torchaudio 2.5.1 pypi_0 pypi
[conda] torchvision 0.20.1 pypi_0 pypi
[conda] transformers 4.49.0.dev0 pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 NIC0 NIC1 NIC2 NIC3 NIC4 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV8 NV8 NV8 NV8 NV8 NODE PXB NODE SYS SYS 0-31,64-95 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NODE PXB NODE SYS SYS 0-31,64-95 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NODE NODE PXB SYS SYS 0-31,64-95 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NODE NODE PXB SYS SYS 0-31,64-95 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 SYS SYS SYS NODE PXB 32-63,96-127 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X SYS SYS SYS NODE PXB 32-63,96-127 1 N/A
NIC0 NODE NODE NODE NODE SYS SYS X NODE NODE SYS SYS
NIC1 PXB PXB NODE NODE SYS SYS NODE X NODE SYS SYS
NIC2 NODE NODE PXB PXB SYS SYS NODE NODE X SYS SYS
NIC3 SYS SYS SYS SYS NODE NODE SYS SYS SYS X NODE
NIC4 SYS SYS SYS SYS PXB PXB SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NVIDIA_VISIBLE_DEVICES=GPU-cb4873ca-3f0e-14e7-e12b-3e4ee26568c1,GPU-56bea91b-7f44-ae7c-a914-3fdade64ab15,GPU-dd4d0920-c2fc-e653-2403-17abec3ded9a,GPU-7ac5e51e-1ae1-801f-3d2f-2a78c290f0eb,GPU-d6f92553-ed7d-c46e-b80a-e6e0060eb646,GPU-c475b987-d99b-e65f-eb25-800bedf3801c
LD_LIBRARY_PATH=/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/cv2/../../lib64:/group/youxiaoyi/TensorRT-9.3.0.1/lib:
NCCL_IB_DISABLE=1
VLLM_USE_V1=1
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I am trying to run inference on Qwen2.5-VL-72B for video processing using 4xA800 GPUs. However, I encountered errors when executing the code with VLLM V1, whereas it works correctly with VLLM V0 by setting VLLM_USE_V1=0.
llm=LLM(
model=MODEL_PATH,
limit_mm_per_prompt={"image": 10, "video": 10},
tensor_parallel_size=4,
gpu_memory_utilization=0.7
)
sampling_params=SamplingParams(
temperature=0.1,
top_p=0.001,
repetition_penalty=1.05,
max_tokens=256,
stop_token_ids=[],
)
question=''messages= [
{"role": "system", "content": "You are a good video analyst"},
{
"role": "user",
"content": [
{
"type": "video",
"video": file,
},
{"type": "text", "text": question},
],
}
]
prompt=self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs=process_vision_info(messages, return_video_kwargs=True)
mm_data= {}
ifimage_inputsisnotNone:
mm_data["image"] =image_inputsifvideo_inputsisnotNone:
mm_data["video"] =video_inputsllm_inputs= {
"prompt": prompt,
"multi_modal_data": mm_data,
# FPS will be returned in video_kwargs#"mm_processor_kwargs": video_kwargs,
}
outputs=llm.generate(llm_inputs, sampling_params=sampling_params)
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] WorkerProc hit an exception: %s
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] Traceback (most recent call last):
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 370, in worker_busy_loop
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] output = func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] return func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_worker.py", line 227, in execute_model
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] output = self.model_runner.execute_model(scheduler_output)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] return func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 873, in execute_model
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] self._update_states(scheduler_output)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 331, in _update_states
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] MRotaryEmbedding.get_input_positions_tensor(
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/model_executor/layers/rotary_embedding.py", line 929, in get_input_positions_tensor
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] video_second_per_grid_t = second_per_grid_ts[video_index]
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] IndexError: list index out of range
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] WorkerProc hit an exception: %s
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] Traceback (most recent call last):
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 370, in worker_busy_loop
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] output = func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] return func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_worker.py", line 227, in execute_model
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] output = self.model_runner.execute_model(scheduler_output)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] return func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 873, in execute_model
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] self._update_states(scheduler_output)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 331, in _update_states
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] MRotaryEmbedding.get_input_positions_tensor(
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/model_executor/layers/rotary_embedding.py", line 929, in get_input_positions_tensor
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] video_second_per_grid_t = second_per_grid_ts[video_index]
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] IndexError: list index out of range
ERROR 02-21 04:40:48 core.py:291] EngineCore hit an exception: Traceback (most recent call last):
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 284, in run_engine_core
ERROR 02-21 04:40:48 core.py:291] engine_core.run_busy_loop()
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 327, in run_busy_loop
ERROR 02-21 04:40:48 core.py:291] outputs = step_fn()
ERROR 02-21 04:40:48 core.py:291] ^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 154, in step
ERROR 02-21 04:40:48 core.py:291] output = self.model_executor.execute_model(scheduler_output)
ERROR 02-21 04:40:48 core.py:291] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/abstract.py", line 75, in execute_model
ERROR 02-21 04:40:48 core.py:291] output = self.collective_rpc("execute_model",
ERROR 02-21 04:40:48 core.py:291] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 133, in collective_rpc
ERROR 02-21 04:40:48 core.py:291] raise e
ERROR 02-21 04:40:48 core.py:291] File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 122, in collective_rpc
ERROR 02-21 04:40:48 core.py:291] raise result
ERROR 02-21 04:40:48 core.py:291] IndexError: list index out of range
ERROR 02-21 04:40:48 core.py:291]
CRITICAL 02-21 04:40:49 core_client.py:191] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
The output of `python collect_env.py`
🐛 Describe the bug
I am trying to run inference on Qwen2.5-VL-72B for video processing using 4xA800 GPUs. However, I encountered errors when executing the code with VLLM V1, whereas it works correctly with VLLM V0 by setting VLLM_USE_V1=0.
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: