Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Errors Encountered While Running Qwen2.5-VL-72B Inference on 4xA800 GPUs with VLLM V1 (Works Fine with VLLM V0) #13629

Open
1 task done
nku-zhichengzhang opened this issue Feb 20, 2025 · 1 comment
Assignees
Labels
bug Something isn't working

Comments

@nku-zhichengzhang
Copy link

Your current environment

The output of `python collect_env.py`
INFO 02-21 04:43:51 __init__.py:207] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.31

Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-2.4.3.3.kwai.x86_64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB

Nvidia driver version: 535.54.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 57 bits virtual
CPU(s):                          128
On-line CPU(s) list:             0-127
Thread(s) per core:              2
Core(s) per socket:              32
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           106
Model name:                      Intel(R) Xeon(R) Platinum 8352Y CPU @ 2.20GHz
Stepping:                        6
CPU MHz:                         2800.017
CPU max MHz:                     3400.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4400.00
Virtualization:                  VT-x
L1d cache:                       3 MiB
L1i cache:                       2 MiB
L2 cache:                        80 MiB
L3 cache:                        96 MiB
NUMA node0 CPU(s):               0-31,64-95
NUMA node1 CPU(s):               32-63,96-127
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.49.0.dev0
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-ml-py              12.570.86                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.1                   pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchaudio                2.5.1                    pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.49.0.dev0              pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    NIC0    NIC1    NIC2    NIC3    NIC4    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV8     NV8     NV8     NV8     NV8     NODE    PXB     NODE    SYS     SYS     0-31,64-95      0               N/A
GPU1    NV8      X      NV8     NV8     NV8     NV8     NODE    PXB     NODE    SYS     SYS     0-31,64-95      0               N/A
GPU2    NV8     NV8      X      NV8     NV8     NV8     NODE    NODE    PXB     SYS     SYS     0-31,64-95      0               N/A
GPU3    NV8     NV8     NV8      X      NV8     NV8     NODE    NODE    PXB     SYS     SYS     0-31,64-95      0               N/A
GPU4    NV8     NV8     NV8     NV8      X      NV8     SYS     SYS     SYS     NODE    PXB     32-63,96-127    1               N/A
GPU5    NV8     NV8     NV8     NV8     NV8      X      SYS     SYS     SYS     NODE    PXB     32-63,96-127    1               N/A
NIC0    NODE    NODE    NODE    NODE    SYS     SYS      X      NODE    NODE    SYS     SYS
NIC1    PXB     PXB     NODE    NODE    SYS     SYS     NODE     X      NODE    SYS     SYS
NIC2    NODE    NODE    PXB     PXB     SYS     SYS     NODE    NODE     X      SYS     SYS
NIC3    SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS      X      NODE
NIC4    SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4

NVIDIA_VISIBLE_DEVICES=GPU-cb4873ca-3f0e-14e7-e12b-3e4ee26568c1,GPU-56bea91b-7f44-ae7c-a914-3fdade64ab15,GPU-dd4d0920-c2fc-e653-2403-17abec3ded9a,GPU-7ac5e51e-1ae1-801f-3d2f-2a78c290f0eb,GPU-d6f92553-ed7d-c46e-b80a-e6e0060eb646,GPU-c475b987-d99b-e65f-eb25-800bedf3801c
LD_LIBRARY_PATH=/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/cv2/../../lib64:/group/youxiaoyi/TensorRT-9.3.0.1/lib:
NCCL_IB_DISABLE=1
VLLM_USE_V1=1
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

I am trying to run inference on Qwen2.5-VL-72B for video processing using 4xA800 GPUs. However, I encountered errors when executing the code with VLLM V1, whereas it works correctly with VLLM V0 by setting VLLM_USE_V1=0.

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
    tensor_parallel_size=4,
    gpu_memory_utilization=0.7
)

sampling_params = SamplingParams(
    temperature=0.1,
    top_p=0.001,
    repetition_penalty=1.05,
    max_tokens=256,
    stop_token_ids=[],
)
question = ''
messages = [
    {"role": "system", "content": "You are a good video analyst"},
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": file,
            },
            {"type": "text", "text": question},
        ],
    }
]
prompt = self.processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,
    # FPS will be returned in video_kwargs
    #"mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate(llm_inputs, sampling_params=sampling_params)
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] WorkerProc hit an exception: %s
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] Traceback (most recent call last):
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 370, in worker_busy_loop
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     output = func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]              ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     return func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]            ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_worker.py", line 227, in execute_model
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     output = self.model_runner.execute_model(scheduler_output)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     return func(*args, **kwargs)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]            ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 873, in execute_model
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     self._update_states(scheduler_output)
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 331, in _update_states
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     MRotaryEmbedding.get_input_positions_tensor(
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/model_executor/layers/rotary_embedding.py", line 929, in get_input_positions_tensor
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]     video_second_per_grid_t = second_per_grid_ts[video_index]
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374]                               ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
(VllmWorker rank=3 pid=80742) ERROR 02-21 04:40:48 multiproc_executor.py:374] IndexError: list index out of range
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] WorkerProc hit an exception: %s
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] Traceback (most recent call last):
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 370, in worker_busy_loop
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     output = func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]              ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     return func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]            ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_worker.py", line 227, in execute_model
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     output = self.model_runner.execute_model(scheduler_output)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     return func(*args, **kwargs)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]            ^^^^^^^^^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 873, in execute_model
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     self._update_states(scheduler_output)
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 331, in _update_states
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     MRotaryEmbedding.get_input_positions_tensor(
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/model_executor/layers/rotary_embedding.py", line 929, in get_input_positions_tensor
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]     video_second_per_grid_t = second_per_grid_ts[video_index]
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374]                               ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
(VllmWorker rank=0 pid=80696) ERROR 02-21 04:40:48 multiproc_executor.py:374] IndexError: list index out of range
ERROR 02-21 04:40:48 core.py:291] EngineCore hit an exception: Traceback (most recent call last):
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 284, in run_engine_core
ERROR 02-21 04:40:48 core.py:291]     engine_core.run_busy_loop()
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 327, in run_busy_loop
ERROR 02-21 04:40:48 core.py:291]     outputs = step_fn()
ERROR 02-21 04:40:48 core.py:291]               ^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/engine/core.py", line 154, in step
ERROR 02-21 04:40:48 core.py:291]     output = self.model_executor.execute_model(scheduler_output)
ERROR 02-21 04:40:48 core.py:291]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/abstract.py", line 75, in execute_model
ERROR 02-21 04:40:48 core.py:291]     output = self.collective_rpc("execute_model",
ERROR 02-21 04:40:48 core.py:291]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 133, in collective_rpc
ERROR 02-21 04:40:48 core.py:291]     raise e
ERROR 02-21 04:40:48 core.py:291]   File "/home/zhangzhicheng03/anaconda3/envs/vllm1/lib/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 122, in collective_rpc
ERROR 02-21 04:40:48 core.py:291]     raise result
ERROR 02-21 04:40:48 core.py:291] IndexError: list index out of range
ERROR 02-21 04:40:48 core.py:291] 
CRITICAL 02-21 04:40:49 core_client.py:191] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@nku-zhichengzhang nku-zhichengzhang added the bug Something isn't working label Feb 20, 2025
@ywang96 ywang96 self-assigned this Feb 20, 2025
@ywang96
Copy link
Member

ywang96 commented Feb 24, 2025

Hello @nku-zhichengzhang! Are you able to repro this on vLLM=0.7.3? If you can share an example for me to debug that'd be great too!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants