Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] RuntimeError: /io/build/temp.linux-x86_64-cpython-37/spconv/build/core_cc/src/csrc/sparse/all/SpconvOps/SpconvOps_get_indice_pairs.cc(65) not implemented for CPU ONLY build. #2061

Open
3 tasks done
zwl8979 opened this issue Nov 27, 2022 · 8 comments
Assignees

Comments

@zwl8979
Copy link

zwl8979 commented Nov 27, 2022

Prerequisite

Task

I'm using the official example scripts/configs for the officially supported tasks/models/datasets.

Branch

master branch https://github.com/open-mmlab/mmdetection3d

Environment

CUDA_HOME: /usr/local/cuda-10.1/
NVCC: Cuda compilation tools, release 10.1, V10.1.10
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.8.0+cu101
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70
  • CuDNN 7.6.3
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.1, CUDNN_VERSION=7.6.3, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.9.0+cu101
OpenCV: 4.6.0
MMCV: 1.6.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.25.3
MMSegmentation: 0.29.1
MMDetection3D: 1.0.0rc5+
spconv2.0: True

<<< conda initialize <<<

export CUDA_HOME=/usr/local/cuda-10.1/
export PATH=$PATH:/usr/local/cuda-10.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-10.1/lib64

#cuda
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

Reproduces the problem - code sample

2022-11-27 23:17:22,114 - mmdet - INFO - workflow: [('train', 1)], max: 40 epochs
2022-11-27 23:17:22,114 - mmdet - INFO - Checkpoints will be saved to /home/dell/zhangweili/mmdetection3d-master/tools/work_dirs/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class by HardDiskBackend.
2022-11-27 23:17:22.798964: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
2022-11-27 23:17:22.799090: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/apis/train.py", line 319, in train_detector
runner.run(data_loaders, cfg.workflow) # 启动
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 136, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 53, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 32, in run_iter
**kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 77, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmdet/models/detectors/base.py", line 248, in train_step
losses = self(**data)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 384, in forward
raise e
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 375, in forward
self.transposed)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/ops.py", line 162, in get_indice_pairs
stream)
RuntimeError: /io/build/temp.linux-x86_64-cpython-37/spconv/build/core_cc/src/csrc/sparse/all/SpconvOps/SpconvOps_get_indice_pairs.cc(65)
not implemented for CPU ONLY build.

Reproduces the problem - command or script

run directly train.py

configs/mvxnet/dv_mvx-fp_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py

Reproduces the problem - error message

2022-11-27 23:17:22,114 - mmdet - INFO - workflow: [('train', 1)], max: 40 epochs
2022-11-27 23:17:22,114 - mmdet - INFO - Checkpoints will be saved to /home/dell/zhangweili/mmdetection3d-master/tools/work_dirs/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class by HardDiskBackend.
2022-11-27 23:17:22.798964: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
2022-11-27 23:17:22.799090: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
2022-11-27 23:17:22.799101: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/fusion_layers/coord_transform.py:35: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
if 'pcd_rotation' in img_meta else torch.eye(
SPCONV_DEBUG_SAVE_PATH not found, you can specify SPCONV_DEBUG_SAVE_PATH as debug data save path to save debug data which can be attached in a issue.
[Exception|native_pair]indices=torch.Size([28776, 4]),bs=2,ss=[41, 1600, 1408],algo=ConvAlgo.Native,ksize=[3, 3, 3],stride=[1, 1, 1],padding=[1, 1, 1],dilation=[1, 1, 1],subm=True,transpose=False
Traceback (most recent call last):
File "/home/dell/zhangweili/mmdetection3d-master/tools/train.py", line 262, in
main()
File "/home/dell/zhangweili/mmdetection3d-master/tools/train.py", line 258, in main
meta=meta)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/apis/train.py", line 351, in train_model
meta=meta)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/apis/train.py", line 319, in train_detector
runner.run(data_loaders, cfg.workflow) # 启动
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 136, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 53, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 32, in run_iter
**kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 77, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmdet/models/detectors/base.py", line 248, in train_step
losses = self(**data)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(*args, **kwargs)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/base.py", line 60, in forward
return self.forward_train(**kwargs)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/mvx_two_stage.py", line 274, in forward_train
points, img=img, img_metas=img_metas)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/mvx_two_stage.py", line 208, in extract_feat
pts_feats = self.extract_pts_feat(points, img_feats, img_metas)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/mvx_faster_rcnn.py", line 57, in extract_pts_feat
x = self.pts_middle_encoder(voxel_features, feature_coors, batch_size)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, inFile "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(*args, **kwargs)
File "/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/middle_encoders/sparse_encoder.py", line 123, in forward
x = self.conv_input(input_sp_tensor)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/modules.py", line 137, in forward
input = module(input)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 384, in forward
raise e
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 375, in forward
self.transposed)
File "/home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/spconv/pytorch/ops.py", line 162, in get_indice_pairs
stream)
RuntimeError: /io/build/temp.linux-x86_64-cpython-37/spconv/build/core_cc/src/csrc/sparse/all/SpconvOps/SpconvOps_get_indice_pairs.cc(65)
not implemented for CPU ONLY build.

Additional information

Hope it can help us solve or suggest, thank you!

@JingweiZhang12
Copy link
Contributor

JingweiZhang12 commented Nov 28, 2022

Maybe you install the CPU-only spconv. Please install the spconv with CUDA. https://github.com/traveller59/spconv

@zwl8979
Copy link
Author

zwl8979 commented Nov 28, 2022

Ok, thank you, because my cuda version is 10.1.105, the latest spconv2.x supports duda10.2 at least, so I changed the original spconv version to 1.2.1. solved!
cuda10.2/11.x refer to: https://github.com/traveller59/spconv
pip uninstall spconv
git clone -b v1.2.1 https://github.com/traveller59/spconv.git
python setup.py bdist_wheel
cd dist
pip install spconv-1.2.1-cp37-cp37m-linux_x86_64.whl

@zwl8979
Copy link
Author

zwl8979 commented Nov 28, 2022

After I replace it with spconv1.2.1, what effect will spconv display as False, and the result of training with pre-training weights is 0!!!
TorchVision: 0.9.0+cu101
OpenCV: 4.6.0
MMCV: 1.6.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.25.3
MMSegmentation: 0.29.1
MMDetection3D: 1.0.0rc5+
spconv2.0: False

2022-11-28 23:59:39,479 - mmdet - INFO - Set random seed to 0, deterministic: False
/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
'dir_offset and dir_limit_offset will be depressed and be '
2022-11-28 23:59:39,900 - mmdet - INFO - initialize SECOND with init_cfg {'type': 'Kaiming', 'layer': 'Conv2d'}
2022-11-28 23:59:39,984 - mmdet - INFO - initialize SECONDFPN with init_cfg [{'type': 'Kaiming', 'layer': 'ConvTranspose2d'}, {'type': 'Constant', 'layer': 'NaiveSyncBatchNorm2d', 'val': 1.0}]
2022-11-28 23:59:39,989 - mmdet - INFO - initialize Anchor3DHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01, 'override': {'type': 'Normal', 'name': 'conv_cls', 'std': 0.01, 'bias_prob': 0.01}}
2022-11-28 23:59:39,991 - mmdet - INFO - initialize ResNet with init_cfg [{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]
2022-11-28 23:59:40,300 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,302 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,303 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,304 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,306 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,307 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,308 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,311 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,312 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,313 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,314 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,316 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,317 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,322 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,327 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,330 - mmdet - INFO - initialize Bottleneck with init_cfg {'type': 'Constant', 'val': 0, 'override': {'name': 'norm3'}}
2022-11-28 23:59:40,343 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
2022-11-28 23:59:40,382 - mmdet - INFO - Model:
DynamicMVXFasterRCNN(
(pts_voxel_layer): Voxelization(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], max_num_points=-1, max_voxels=(-1, -1), deterministic=True)
(pts_voxel_encoder): DynamicVFE(
(scatter): DynamicScatter(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], average_points=True)
(vfe_layers): ModuleList(
.....
init_cfg={'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
)
2022-11-28 23:59:49,050 - mmdet - INFO - load checkpoint from local path: /home/dell/zhangweili/mmdetection3d-master/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth
2022-11-28 23:59:49,220 - mmdet - INFO - Start running, host: dell@dell-PowerEdge-R740, work_dir: /home/dell/zhangweili/mmdetection3d-master/tools/tools/work_dirs/my_dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class
2022-11-28 23:59:49,220 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) CosineAnnealingLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

before_train_epoch:
(VERY_HIGH ) CosineAnnealingLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

before_train_iter:
(VERY_HIGH ) CosineAnnealingLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook

after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

before_val_epoch:
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

before_val_iter:
(LOW ) IterTimerHook

after_val_iter:
(LOW ) IterTimerHook

after_val_epoch:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

after_run:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook

2022-11-28 23:59:49,220 - mmdet - INFO - workflow: [('train', 1)], max: 20 epochs
2022-11-28 23:59:49,221 - mmdet - INFO - Checkpoints will be saved to /home/dell/zhangweili/mmdetection3d-master/tools/tools/work_dirs/my_dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class by HardDiskBackend.
2022-11-28 23:59:50.060441: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
2022-11-28 23:59:50.060558: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/dell/anaconda3/envs/mmdet3d/lib/python3.7/site-packages/cv2/../../lib64:/usr/local/cuda-9.0/lib64
2022-11-28 23:59:50.060569: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/fusion_layers/coord_transform.py:35: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
if 'pcd_rotation' in img_meta else torch.eye(
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 9/9, 5.2 task/s, elapsed: 2s, ETA: 0s
Converting prediction to KITTI format
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 9/9, 366.0 task/s, elapsed: 0s, ETA: 0s
Result is saved to /tmp/tmpe2hzt4vs/resultspts_bbox.pkl.
2022-11-29 00:00:20,843 - mmdet - INFO - Results of pts_bbox:

----------- AP11 Results ------------

Pedestrian [email protected], 0.50, 0.50:
bbox AP11:0.0000, 0.0000, 0.0000
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:0.00, 0.00, 0.00
Pedestrian [email protected], 0.25, 0.25:
bbox AP11:0.0000, 0.0000, 0.0000
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:0.00, 0.00, 0.00
Cyclist [email protected], 0.50, 0.50:
bbox AP11:0.0000, 0.0000, 0.0000
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:0.00, 0.00, 0.00
Cyclist [email protected], 0.25, 0.25:
bbox AP11:0.0000, 0.0000, 0.0000
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:0.00, 0.00, 0.00
Car [email protected], 0.70, 0.70:
bbox AP11:3.0303, 3.0303, 3.0303
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:3.03, 3.03, 3.03
Car [email protected], 0.50, 0.50:
bbox AP11:3.0303, 3.0303, 3.0303
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:3.03, 3.03, 3.03

Overall AP11@easy, moderate, hard:
bbox AP11:1.0101, 1.0101, 1.0101
bev AP11:0.0000, 0.0000, 0.0000
3d AP11:0.0000, 0.0000, 0.0000
aos AP11:1.01, 1.01, 1.01

----------- AP40 Results ------------

Pedestrian [email protected], 0.50, 0.50:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00
Pedestrian [email protected], 0.25, 0.25:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00
Cyclist [email protected], 0.50, 0.50:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00
Cyclist [email protected], 0.25, 0.25:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00
Car [email protected], 0.70, 0.70:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00
Car [email protected], 0.50, 0.50:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00

Overall AP40@easy, moderate, hard:
bbox AP40:0.0000, 0.0000, 0.0000
bev AP40:0.0000, 0.0000, 0.0000
3d AP40:0.0000, 0.0000, 0.0000
aos AP40:0.00, 0.00, 0.00

2022-11-29 00:00:20,844 - mmdet - INFO - Exp name: my_dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py
2022-11-29 00:00:20,844 - mmdet - INFO - Epoch(val) [1][9] pts_bbox/KITTI/Pedestrian_3D_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Car_3D_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_easy_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP11_easy_strict: 3.0303, pts_bbox/KITTI/Car_3D_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_moderate_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP11_moderate_strict: 3.0303, pts_bbox/KITTI/Car_3D_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_hard_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP11_hard_strict: 3.0303, pts_bbox/KITTI/Car_3D_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_easy_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP11_easy_loose: 3.0303, pts_bbox/KITTI/Car_3D_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_moderate_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP11_moderate_loose: 3.0303, pts_bbox/KITTI/Car_3D_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP11_hard_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP11_hard_loose: 3.0303, pts_bbox/KITTI/Overall_3D_AP11_easy: 0.0000, pts_bbox/KITTI/Overall_BEV_AP11_easy: 0.0000, pts_bbox/KITTI/Overall_2D_AP11_easy: 1.0101, pts_bbox/KITTI/Overall_3D_AP11_moderate: 0.0000, pts_bbox/KITTI/Overall_BEV_AP11_moderate: 0.0000, pts_bbox/KITTI/Overall_2D_AP11_moderate: 1.0101, pts_bbox/KITTI/Overall_3D_AP11_hard: 0.0000, pts_bbox/KITTI/Overall_BEV_AP11_hard: 0.0000, pts_bbox/KITTI/Overall_2D_AP11_hard: 1.0101, pts_bbox/KITTI/Pedestrian_3D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Pedestrian_3D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Pedestrian_BEV_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Pedestrian_2D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Cyclist_3D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_BEV_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Cyclist_2D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Car_3D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP40_easy_strict: 0.0000, pts_bbox/KITTI/Car_3D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP40_moderate_strict: 0.0000, pts_bbox/KITTI/Car_3D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Car_2D_AP40_hard_strict: 0.0000, pts_bbox/KITTI/Car_3D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP40_easy_loose: 0.0000, pts_bbox/KITTI/Car_3D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP40_moderate_loose: 0.0000, pts_bbox/KITTI/Car_3D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Car_BEV_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Car_2D_AP40_hard_loose: 0.0000, pts_bbox/KITTI/Overall_3D_AP40_easy: 0.0000, pts_bbox/KITTI/Overall_BEV_AP40_easy: 0.0000, pts_bbox/KITTI/Overall_2D_AP40_easy: 0.0000, pts_bbox/KITTI/Overall_3D_AP40_moderate: 0.0000, pts_bbox/KITTI/Overall_BEV_AP40_moderate: 0.0000, pts_bbox/KITTI/Overall_2D_AP40_moderate: 0.0000, pts_bbox/KITTI/Overall_3D_AP40_hard: 0.0000, pts_bbox/KITTI/Overall_BEV_AP40_hard: 0.0000, pts_bbox/KITTI/Overall_2D_AP40_hard: 0.0000
/home/dell/zhangweili/mmdetection3d-master/mmdet3d/models/fusion_layers/coord_transform.py:35: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
if 'pcd_rotation' in img_meta else torch.eye(
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 9/9, 5.2 task/s, elapsed: 2s, ETA: 0s
Converting prediction to KITTI format
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 9/9, 391.3 task/s, elapsed: 0s, ETA: 0s
Result is saved to /tmp/tmpu2avay8u/resultspts_bbox.pkl.

@VVsssssk
Copy link
Collaborator

Hi, we have support spconv1.x in mmcv, so you don't need to install spconv1.x. And can you use default mmcv's spconv to try again?

@VVsssssk
Copy link
Collaborator

And I suggest you check your env by PointPillars model.

@zwl8979
Copy link
Author

zwl8979 commented Jan 4, 2023

@VVsssssk @JingweiZhang12

1. May I use when building a virtual environment:

conda activate -n mmdtection3d python=3.7
cuda=11.1 cudnn=8005 pytorch=0.10.0 torchvision=0.11.0
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -r requirements/mminstall.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2. When we set up the environment for testing, this error still popped up:

**(mmdetection3d) ubuntu@ubuntu-ThinkStation-P920:~/zhangweili/mmdetection3d-master$ python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth --show
/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/dense_heads/anchor3d_head.py:85: UserWarning: dir_offset and dir_limit_offset will be depressed and be incorporated into box coder in the future
'dir_offset and dir_limit_offset will be depressed and be '
load checkpoint from local path: checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
[Exception|native_pair]indices=torch.Size([13092, 4]),bs=1,ss=[41, 1600, 1408],algo=ConvAlgo.Native,ksize=[3, 3, 3],stride=[1, 1, 1],padding=[1, 1, 1],dilation=[1, 1, 1],subm=True,transpose=False
SPCONV_DEBUG_SAVE_PATH not found, you can specify SPCONV_DEBUG_SAVE_PATH as debug data save path to save debug data which can be attached in a issue.
Traceback (most recent call last):
File "demo/pcd_demo.py", line 44, in
main()
File "demo/pcd_demo.py", line 31, in main
result, data = inference_detector(model, args.pcd)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/apis/inference.py", line 151, in inference_detector
result = model(return_loss=False, rescale=True, **data)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(*args, **kwargs)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/base.py", line 62, in forward
return self.forward_test(**kwargs)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/base.py", line 43, in forward_test
return self.simple_test(points[0], img_metas[0], img[0], **kwargs)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/voxelnet.py", line 100, in simple_test
x = self.extract_feat(points, img_metas)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/detectors/voxelnet.py", line 45, in extract_feat
x = self.middle_encoder(voxel_features, coors, batch_size)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(*args, **kwargs)
File "/home/ubuntu/zhangweili/mmdetection3d-master/mmdet3d/models/middle_encoders/sparse_encoder.py", line 123, in forward
x = self.conv_input(input_sp_tensor)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/spconv/pytorch/modules.py", line 137, in forward
input = module(input)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 384, in forward
raise e
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/spconv/pytorch/conv.py", line 375, in forward
self.transposed)
File "/home/ubuntu/anaconda3/envs/mmdetection3d/lib/python3.7/site-packages/spconv/pytorch/ops.py", line 162, in get_indice_pairs
stream)
RuntimeError: /io/build/temp.linux-x86_64-cpython-37/spconv/build/core_cc/src/csrc/sparse/all/SpconvOps/SpconvOps_get_indice_pairs.cc(65)
not implemented for CPU ONLY build.

May I ask how to solve this problem? Is the reason for this problem that all dependencies cannot be installed directly?
thanks!

  1. conda list :
    _# packages in environment at /home/ubuntu/anaconda3/envs/mmdetection3d:

Name Version Build Channel

_libgcc_mutex 0.1 main
openmp_mutex 5.1 1_gnu
absl-py 1.3.0 pypi_0 pypi
addict 2.4.0 pypi_0 pypi
anyio 3.6.2 pypi_0 pypi
argon2-cffi 21.3.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 pypi_0 pypi
astor 0.8.1 pypi_0 pypi
asynctest 0.13.0 pypi_0 pypi
attrs 22.2.0 pypi_0 pypi
backcall 0.2.0 pypi_0 pypi
beautifulsoup4 4.11.1 pypi_0 pypi
black 22.12.0 pypi_0 pypi
bleach 5.0.1 pypi_0 pypi
ca-certificates 2022.10.11 h06a4308_0
cachetools 4.2.4 pypi_0 pypi
ccimport 0.4.2 pypi_0 pypi
certifi 2022.12.7 py37h06a4308_0
cffi 1.15.1 pypi_0 pypi
charset-normalizer 2.1.1 pypi_0 pypi
click 8.1.3 pypi_0 pypi
codecov 2.1.12 pypi_0 pypi
colorama 0.4.6 pypi_0 pypi
configargparse 1.5.3 pypi_0 pypi
coverage 7.0.3 pypi_0 pypi
cumm 0.3.7 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
dash 2.7.1 pypi_0 pypi
dash-core-components 2.0.0 pypi_0 pypi
dash-html-components 2.0.0 pypi_0 pypi
dash-table 5.0.0 pypi_0 pypi
debugpy 1.6.4 pypi_0 pypi
decorator 5.1.1 pypi_0 pypi
defusedxml 0.7.1 pypi_0 pypi
descartes 1.1.0 pypi_0 pypi
entrypoints 0.4 pypi_0 pypi
exceptiongroup 1.1.0 pypi_0 pypi
fastjsonschema 2.16.2 pypi_0 pypi
fire 0.5.0 pypi_0 pypi
flake8 5.0.4 pypi_0 pypi
flask 2.2.2 pypi_0 pypi
fonttools 4.38.0 pypi_0 pypi
gast 0.2.2 pypi_0 pypi
google-auth 1.35.0 pypi_0 pypi
google-auth-oauthlib 0.4.6 pypi_0 pypi
google-pasta 0.2.0 pypi_0 pypi
grpcio 1.51.1 pypi_0 pypi
h5py 3.7.0 pypi_0 pypi
idna 3.4 pypi_0 pypi
imageio 2.23.0 pypi_0 pypi
importlib-metadata 4.2.0 pypi_0 pypi
importlib-resources 5.10.2 pypi_0 pypi
iniconfig 1.1.1 pypi_0 pypi
interrogate 1.5.0 pypi_0 pypi
ipykernel 6.16.2 pypi_0 pypi
ipython 7.34.0 pypi_0 pypi
ipython-genutils 0.2.0 pypi_0 pypi
ipywidgets 8.0.4 pypi_0 pypi
isort 5.11.4 pypi_0 pypi
itsdangerous 2.1.2 pypi_0 pypi
jedi 0.18.2 pypi_0 pypi
jinja2 3.1.2 pypi_0 pypi
joblib 1.2.0 pypi_0 pypi
jsonschema 4.17.3 pypi_0 pypi
jupyter 1.0.0 pypi_0 pypi
jupyter-client 7.4.8 pypi_0 pypi
jupyter-console 6.4.4 pypi_0 pypi
jupyter-core 4.12.0 pypi_0 pypi
jupyter-server 1.23.4 pypi_0 pypi
jupyterlab-pygments 0.2.2 pypi_0 pypi
jupyterlab-widgets 3.0.5 pypi_0 pypi
keras-applications 1.0.8 pypi_0 pypi
keras-preprocessing 1.1.2 pypi_0 pypi
kiwisolver 1.4.4 pypi_0 pypi
kwarray 0.6.7 pypi_0 pypi
lark 1.1.5 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libstdcxx-ng 11.2.0 h1234567_1
llvmlite 0.36.0 pypi_0 pypi
lyft-dataset-sdk 0.0.8 pypi_0 pypi
markdown 3.3.5 pypi_0 pypi
markupsafe 2.1.1 pypi_0 pypi
matplotlib 3.5.3 pypi_0 pypi
matplotlib-inline 0.1.6 pypi_0 pypi
mccabe 0.7.0 pypi_0 pypi
mistune 2.0.4 pypi_0 pypi
mmcls 0.25.0 pypi_0 pypi
mmcv-full 1.6.0 pypi_0 pypi
mmdet 2.26.0 pypi_0 pypi
mmdet3d 1.0.0rc6 dev_0
mmsegmentation 0.29.1 pypi_0 pypi
mypy-extensions 0.4.3 pypi_0 pypi
nbclassic 0.4.8 pypi_0 pypi
nbclient 0.7.2 pypi_0 pypi
nbconvert 7.2.7 pypi_0 pypi
nbformat 5.5.0 pypi_0 pypi
ncurses 6.3 h5eee18b_3
nest-asyncio 1.5.6 pypi_0 pypi
networkx 2.2 pypi_0 pypi
ninja 1.11.1 pypi_0 pypi
notebook 6.5.2 pypi_0 pypi
notebook-shim 0.2.2 pypi_0 pypi
numba 0.53.0 pypi_0 pypi
numpy 1.21.6 pypi_0 pypi
nuscenes-devkit 1.1.9 pypi_0 pypi
oauthlib 3.2.2 pypi_0 pypi
open3d 0.16.0 pypi_0 pypi
opencv-python 4.7.0.68 pypi_0 pypi
openssl 1.1.1s h7f8727e_0
opt-einsum 3.3.0 pypi_0 pypi
packaging 22.0 pypi_0 pypi
pandas 1.3.5 pypi_0 pypi
pandocfilters 1.5.0 pypi_0 pypi
parso 0.8.3 pypi_0 pypi
pathspec 0.10.3 pypi_0 pypi
pccm 0.4.4 pypi_0 pypi
pexpect 4.8.0 pypi_0 pypi
pickleshare 0.7.5 pypi_0 pypi
pillow 9.4.0 pypi_0 pypi
pip 22.3.1 py37h06a4308_0
pkgutil-resolve-name 1.3.10 pypi_0 pypi
platformdirs 2.6.2 pypi_0 pypi
plotly 5.11.0 pypi_0 pypi
pluggy 1.0.0 pypi_0 pypi
plyfile 0.7.4 pypi_0 pypi
portalocker 2.6.0 pypi_0 pypi
prettytable 3.5.0 pypi_0 pypi
prometheus-client 0.15.0 pypi_0 pypi
prompt-toolkit 3.0.36 pypi_0 pypi
protobuf 4.21.12 pypi_0 pypi
psutil 5.9.4 pypi_0 pypi
ptyprocess 0.7.0 pypi_0 pypi
py 1.11.0 pypi_0 pypi
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pybind11 2.10.3 pypi_0 pypi
pycocotools 2.0.6 pypi_0 pypi
pycodestyle 2.9.1 pypi_0 pypi
pycparser 2.21 pypi_0 pypi
pyflakes 2.5.0 pypi_0 pypi
pygments 2.14.0 pypi_0 pypi
pyparsing 3.0.9 pypi_0 pypi
pyquaternion 0.9.9 pypi_0 pypi
pyrsistent 0.19.3 pypi_0 pypi
pytest 7.2.0 pypi_0 pypi
pytest-cov 4.0.0 pypi_0 pypi
pytest-runner 6.0.0 pypi_0 pypi
python 3.7.15 h7a1cb2a_1
python-dateutil 2.8.2 pypi_0 pypi
pytz 2022.7 pypi_0 pypi
pywavelets 1.3.0 pypi_0 pypi
pyyaml 6.0 pypi_0 pypi
pyzmq 24.0.1 pypi_0 pypi
qtconsole 5.4.0 pypi_0 pypi
qtpy 2.3.0 pypi_0 pypi
readline 8.2 h5eee18b_0
requests 2.28.1 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
rsa 4.9 pypi_0 pypi
scikit-image 0.19.3 pypi_0 pypi
scikit-learn 1.0.2 pypi_0 pypi
scipy 1.4.1 pypi_0 pypi
send2trash 1.8.0 pypi_0 pypi
setuptools 65.5.0 py37h06a4308_0
shapely 2.0.0 pypi_0 pypi
six 1.16.0 pypi_0 pypi
sniffio 1.3.0 pypi_0 pypi
soupsieve 2.3.2.post1 pypi_0 pypi
spconv 2.2.6 pypi_0 pypi
sqlite 3.40.0 h5082296_0
tabulate 0.9.0 pypi_0 pypi
tenacity 8.1.0 pypi_0 pypi
tensorboard 2.1.1 pypi_0 pypi
tensorflow-estimator 2.1.0 pypi_0 pypi
tensorflow-gpu 2.1.0 pypi_0 pypi
termcolor 2.2.0 pypi_0 pypi
terminado 0.17.1 pypi_0 pypi
terminaltables 3.1.10 pypi_0 pypi
threadpoolctl 3.1.0 pypi_0 pypi
tifffile 2021.11.2 pypi_0 pypi
tinycss2 1.2.1 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
toml 0.10.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
torch 1.10.0+cu111 pypi_0 pypi
torchaudio 0.10.0+rocm4.1 pypi_0 pypi
torchvision 0.11.0+cu111 pypi_0 pypi
tornado 6.2 pypi_0 pypi
tqdm 4.64.1 pypi_0 pypi
traitlets 5.8.0 pypi_0 pypi
trimesh 2.35.39 pypi_0 pypi
typed-ast 1.5.4 pypi_0 pypi
typing-extensions 4.4.0 pypi_0 pypi
ubelt 1.2.3 pypi_0 pypi
urllib3 1.26.13 pypi_0 pypi
waymo-open-dataset-tf-2-1-0 1.2.0 pypi_0 pypi
wcwidth 0.2.5 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
websocket-client 1.4.2 pypi_0 pypi
werkzeug 2.2.2 pypi_0 pypi
wheel 0.37.1 pyhd3eb1b0_0
widgetsnbextension 4.0.5 pypi_0 pypi
wrapt 1.14.1 pypi_0 pypi
xdoctest 1.1.0 pypi_0 pypi
xz 5.2.8 h5eee18b_0
yapf 0.32.0 pypi_0 pypi
zipp 3.11.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0

@zwl8979
Copy link
Author

zwl8979 commented Jan 5, 2023

@VVsssssk @JingweiZhang12 @
execute statement:pyhton ./mmdet3d/utils/collect_envs.py
fatal: not a git repository (or any of the parent directories): .git
sys.platform: linux
Python: 3.7.15 (default, Nov 24 2022, 21:12:53) [GCC 11.2.0]
CUDA available: True
GPU 0: NVIDIA RTX A6000
CUDA_HOME: /usr/local/cuda-11.1
NVCC: Cuda compilation tools, release 11.1, V11.1.74
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.10.0+cu111
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX512
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.11.0+cu111
OpenCV: 4.7.0
MMCV: 1.6.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMDetection: 2.26.0
MMSegmentation: 0.29.1
MMDetection3D: 1.0.0rc6+
spconv2.0: True
It took almost two weeks to build the light environment, please solve it, thank you!

@yyxr75
Copy link

yyxr75 commented May 10, 2024

Is it done? I came across this issue recently.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants