-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain.py
171 lines (139 loc) · 7.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# this code is developed based on https://github.com/jayleicn/TVQA
import os
import numpy as np
from tqdm import tqdm
import json
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from violin_dataset import ViolinDataset, pad_collate, preprocess_batch
from config import get_argparse
from model.ViolinBase import ViolinBase
from transformers import *
def check_param(model):
grad_lst = []
for name, param in model.named_parameters():
grad_lst.append(torch.norm(param.grad.data.view(-1)).item())
return grad_lst
def get_data_loader(opt, dset, batch_size, if_shuffle):
return DataLoader(dset, batch_size=batch_size, shuffle=if_shuffle, num_workers=0, collate_fn=pad_collate)
def train_epoch(opt, trn_dset, val_dset, tst_dset, model, optimizer, epoch, previous_best_acc):
model.train()
train_loader = get_data_loader(opt, trn_dset, opt.batch_size, True)
#check_param(model)
train_loss = []
valid_acc_log = ["epoch\ttrn acc\tval acc"]
train_corrects = []
train_real_corrects = []
train_fake_corrects = []
print('epoch', epoch, '='*20)
for batch_idx, batch in enumerate(tqdm(train_loader)):
cur_clip_ids, padded_vid_feat, sub_feat, state_feat = preprocess_batch(batch, bert, opt)
real_state_output = model(padded_vid_feat, sub_feat, state_feat[0]).squeeze()
fake_state_output = model(padded_vid_feat, sub_feat, state_feat[1]).squeeze()
#assert real_state_output.size() == torch.Size([state_feat[0][0].size()[0]])
threshold = 0.5
loss = torch.mean(-torch.log(1.0-fake_state_output)-torch.log(real_state_output), dim=0)
loss_sum = torch.sum(-torch.log(1.0-fake_state_output)-torch.log(real_state_output), dim=0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure accuracy and record loss
train_loss.append(loss_sum.item())
train_corrects += (real_state_output>=threshold).to(torch.device('cpu')).tolist()
train_corrects += (fake_state_output<threshold).to(torch.device('cpu')).tolist()
#print(train_corrects)
train_real_corrects += (real_state_output>=threshold).to(torch.device('cpu')).tolist()
train_fake_corrects += (fake_state_output<threshold).to(torch.device('cpu')).tolist()
train_acc = sum(train_corrects) / float(len(train_corrects))
train_loss = sum(train_loss) / float(len(train_corrects))
train_real_acc = sum(train_real_corrects) / float(len(train_real_corrects))
train_fake_acc = sum(train_fake_corrects) / float(len(train_fake_corrects))
#print(check_param(model))
# validate
valid_loader = get_data_loader(opt, val_dset, opt.test_batch_size, False)
valid_loss, valid_acc, valid_real_acc, valid_fake_acc, valid_real_corrects, valid_fake_corrects = validate(model, valid_loader)
valid_log_str = "%02d\t%.4f\t%.4f" % (epoch, train_acc, valid_acc)
valid_acc_log.append(valid_log_str)
print("\n Epoch %d TRAIN loss %.4f acc %.4f real acc %.4f fake acc %.4f VAL loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (epoch, train_loss, train_acc, train_real_acc, train_fake_acc, valid_loss, valid_acc, valid_real_acc, valid_fake_acc))
with open(os.path.join(opt.results_dir, "valid_acc.log"), "a") as f:
f.write("Epoch %d TRAIN loss %.4f acc %.4f real acc %.4f fake acc %.4f VAL loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (epoch, train_loss, train_acc, train_real_acc, train_fake_acc, valid_loss, valid_acc, valid_real_acc, valid_fake_acc))
torch.save(model.state_dict(), os.path.join(opt.results_dir, "model_epoch_{}.pth".format(epoch)))
if valid_acc > previous_best_acc:
previous_best_acc = valid_acc
torch.save(model.state_dict(), os.path.join(opt.results_dir, "best_valid.pth"))
test_loader = get_data_loader(opt, tst_dset, opt.test_batch_size, False)
test_loss, test_acc, test_real_acc, test_fake_acc, _, _ = validate(model, test_loader)
print("\n Epoch %d TEST loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (epoch, test_loss, test_acc, test_real_acc, test_fake_acc))
with open(os.path.join(opt.results_dir, "valid_acc.log"), "a") as f:
f.write("Epoch %d TEST loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (epoch, test_loss, test_acc, test_real_acc, test_fake_acc))
return previous_best_acc
def validate(model, valid_loader):
model.eval()
with torch.no_grad():
valid_loss = []
valid_corrects = []
valid_real_corrects = []
valid_fake_corrects = []
clip_ids = []
for _, batch in enumerate(tqdm(valid_loader)):
cur_clip_ids, padded_vid_feat, sub_feat, state_feat = preprocess_batch(batch, bert, opt)
real_state_output = model(padded_vid_feat, sub_feat, state_feat[0]).squeeze()
fake_state_output = model(padded_vid_feat, sub_feat, state_feat[1]).squeeze()
#assert real_state_output.size() == torch.Size([padded_vid_feat[0].size()[0]])
threshold = 0.5
loss = torch.mean(-torch.log(1.0-fake_state_output)-torch.log(real_state_output), dim=0)
loss_sum = torch.sum(-torch.log(1.0-fake_state_output)-torch.log(real_state_output), dim=0)
# measure accuracy and record loss
valid_loss.append(loss_sum.item())
clip_ids += cur_clip_ids
valid_corrects += (real_state_output>=threshold).to(torch.device('cpu')).tolist()
valid_corrects += (fake_state_output<threshold).to(torch.device('cpu')).tolist()
valid_real_corrects += (real_state_output>=threshold).to(torch.device('cpu')).tolist()
valid_fake_corrects += (fake_state_output<threshold).to(torch.device('cpu')).tolist()
valid_acc = sum(valid_corrects) / float(len(valid_corrects))
valid_loss = sum(valid_loss) / float(len(valid_corrects))
valid_real_acc = sum(valid_real_corrects) / float(len(valid_real_corrects))
valid_fake_acc = sum(valid_fake_corrects) / float(len(valid_fake_corrects))
return valid_loss, valid_acc, valid_real_acc, valid_fake_acc, valid_real_corrects, valid_fake_corrects
if __name__ == '__main__':
random_seed = 219373241
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
np.random.seed(random_seed)
opt = get_argparse()
bert = BertModel.from_pretrained(opt.bert_dir)
bert_tokenizer = BertTokenizer.from_pretrained(opt.bert_dir)
bert.to(opt.device)
bert.eval()
DSET = eval(opt.data)
if not opt.test:
os.makedirs(opt.results_dir)
trn_dset = DSET(opt, bert_tokenizer, 'train')
val_dset = DSET(opt, bert_tokenizer, 'validate')
tst_dset = DSET(opt, bert_tokenizer, 'test')
else:
tst_dset = DSET(opt, bert_tokenizer, 'test')
model = eval(opt.model)(opt)
print(model)
if opt.test:
model.load_state_dict(torch.load(opt.model_path))
model.to(opt.device)
if opt.test:
test_loader = get_data_loader(opt, tst_dset, opt.test_batch_size, False)
test_loss, test_acc, test_real_acc, test_fake_acc, test_real_corrects, test_fake_corrects = validate(model, test_loader)
print("Test loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (test_loss, test_acc, test_real_acc, test_fake_acc))
with open(opt.model_path+'_test.res','w') as ftst:
ftst.write("Test loss %.4f acc %.4f real acc %.4f fake acc %.4f\n"
% (test_loss, test_acc, test_real_acc, test_fake_acc))
else:
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.wd)
best_acc = 0.
for epoch in range(opt.n_epoch):
best_acc = train_epoch(opt, trn_dset, val_dset, tst_dset, model, optimizer, epoch, best_acc)