forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_interactivechat.py
180 lines (142 loc) · 6.37 KB
/
run_interactivechat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
import time
import numpy as np
import paddle
import PIL.Image
from paddlenlp.transformers import LlamaTokenizerFast
from paddlemix.models.janus import JanusMultiModalityCausalLM
from paddlemix.processors import JanusImageProcessor, JanusVLChatProcessor
# Specify the path to the model
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="deepseek-ai/Janus-1.3B")
parser.add_argument("--dtype", type=str, default="float16")
args = parser.parse_args()
vl_gpt = JanusMultiModalityCausalLM.from_pretrained(args.model_path, dtype=args.dtype)
tokenizer = LlamaTokenizerFast.from_pretrained(args.model_path)
image_processer = JanusImageProcessor.from_pretrained(args.model_path)
vl_chat_processor: JanusVLChatProcessor = JanusVLChatProcessor(image_processer, tokenizer)
def create_prompt(user_input: str) -> str:
conversation = [
{
"role": "User",
"content": user_input,
},
{"role": "Assistant", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
return prompt
@paddle.no_grad()
def generate(
mmgpt,
vl_chat_processor,
prompt: str,
short_prompt: str,
parallel_size: int = 16,
temperature: float = 1,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
img_size: int = 384,
patch_size: int = 16,
):
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = paddle.to_tensor(data=input_ids.input_ids, dtype="int64")
tokens = paddle.zeros(shape=(parallel_size * 2, len(input_ids)), dtype="int32")
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
generated_tokens = paddle.zeros(shape=(parallel_size, image_token_num_per_image), dtype="int32")
outputs = None # Initialize outputs for use in the loop
for i in range(image_token_num_per_image):
batch_size, seq_length = inputs_embeds.shape[:2]
past_key_values_length = outputs.past_key_values[0][0].shape[1] if i != 0 else 0
position_ids = paddle.arange(past_key_values_length, seq_length + past_key_values_length).expand(
(batch_size, seq_length)
)
outputs = mmgpt.language_model.llama(
position_ids=position_ids,
inputs_embeds=inputs_embeds, # [4, 1, 2048]
use_cache=True,
past_key_values=outputs.past_key_values if i != 0 else None,
return_dict=True,
)
hidden_states = outputs.last_hidden_state
logits = mmgpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = paddle.nn.functional.softmax(x=logits / temperature, axis=-1)
next_token = paddle.multinomial(x=probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(axis=-1)
next_token = paddle.concat(x=[next_token.unsqueeze(axis=1), next_token.unsqueeze(axis=1)], axis=1).reshape(
[-1]
)
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(axis=1)
dec = mmgpt.gen_vision_model.decode_code(
generated_tokens.astype(dtype="int32"),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size],
)
dec = dec.astype("float32").cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
os.makedirs("generated_samples", exist_ok=True)
# Create a timestamp
timestamp = time.strftime("%Y%m%d-%H%M%S")
# Sanitize the short_prompt to ensure it's safe for filenames
short_prompt = re.sub(r"\W+", "_", short_prompt)[:50]
# Save images with timestamp and part of the user prompt in the filename
for i in range(parallel_size):
save_path = os.path.join("generated_samples", f"img_{timestamp}_{short_prompt}_{i}.jpg")
PIL.Image.fromarray(visual_img[i]).save(save_path)
def interactive_image_generator():
print("Welcome to the interactive image generator!")
# Ask for the number of images at the start of the session
while True:
num_images_input = input("How many images would you like to generate per prompt? (Enter a positive integer): ")
if num_images_input.isdigit() and int(num_images_input) > 0:
parallel_size = int(num_images_input)
break
else:
print("Invalid input. Please enter a positive integer.")
while True:
user_input = input("Please describe the image you'd like to generate (or type 'exit' to quit): ")
if user_input.lower() == "exit":
print("Exiting the image generator. Goodbye!")
break
prompt = create_prompt(user_input)
# Create a sanitized version of user_input for the filename
short_prompt = re.sub(r"\W+", "_", user_input)[:50]
print(f"Generating {parallel_size} image(s) for: '{user_input}'")
generate(
mmgpt=vl_gpt,
vl_chat_processor=vl_chat_processor,
prompt=prompt,
short_prompt=short_prompt,
parallel_size=parallel_size, # Pass the user-specified number of images
)
print("Image generation complete! Check the 'generated_samples' folder for the output.\n")
if __name__ == "__main__":
interactive_image_generator()