-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathL0Restoration.m
70 lines (69 loc) · 1.87 KB
/
L0Restoration.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function S = L0Restoration(Im, kernel, lambda, kappa)
%%
% Image restoration with L0 prior
% The objective function:
% S^* = argmin ||I*k - B||^2 + lambda |\nabla I|_0
%% Input:
% @Im: Blurred image
% @kernel: blur kernel
% @lambda: weight for the L0 prior
% @kappa: Update ratio in the ADM
%% Output:
% @S: Latent image
%
% The Code is created based on the method described in the following paper
% [1] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang,
% Deblurring Text Images via L0-Regularized Intensity and Gradient
% Prior, CVPR, 2014.
% [2] Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via l0 gradient minimization.
% ACM Trans. Graph., 30(6):174, 2011.
%
% Author: Jinshan Pan ([email protected])
% Date : 05/18/2014
if ~exist('kappa','var')
kappa = 2.0;
end
%% pad image
H = size(Im,1); W = size(Im,2);
Im = wrap_boundary_liu(Im, opt_fft_size([H W]+size(kernel)-1));
%%
S = Im;
betamax = 1e5;
fx = [1, -1];
fy = [1; -1];
[N,M,D] = size(Im);
sizeI2D = [N,M];
otfFx = psf2otf(fx,sizeI2D);
otfFy = psf2otf(fy,sizeI2D);
%%
KER = psf2otf(kernel,sizeI2D);
Den_KER = abs(KER).^2;
%%
Denormin2 = abs(otfFx).^2 + abs(otfFy ).^2;
if D>1
Denormin2 = repmat(Denormin2,[1,1,D]);
KER = repmat(KER,[1,1,D]);
Den_KER = repmat(Den_KER,[1,1,D]);
end
Normin1 = conj(KER).*fft2(S);
%%
beta = 2*lambda;
while beta < betamax
Denormin = Den_KER + beta*Denormin2;
h = [diff(S,1,2), S(:,1,:) - S(:,end,:)];
v = [diff(S,1,1); S(1,:,:) - S(end,:,:)];
if D==1
t = (h.^2+v.^2)<lambda/beta;
else
t = sum((h.^2+v.^2),3)<lambda/beta;
t = repmat(t,[1,1,D]);
end
h(t)=0; v(t)=0;
Normin2 = [h(:,end,:) - h(:, 1,:), -diff(h,1,2)];
Normin2 = Normin2 + [v(end,:,:) - v(1, :,:); -diff(v,1,1)];
FS = (Normin1 + beta*fft2(Normin2))./Denormin;
S = real(ifft2(FS));
beta = beta*kappa;
end
S = S(1:H, 1:W, :);
end