-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathDemo_TWSC_RGB2YUV_DND2017.m
81 lines (80 loc) · 3.03 KB
/
Demo_TWSC_RGB2YUV_DND2017.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
%-------------------------------------------------------------------------------------------------------------
% This is an implementation of the TWSC algorithm for real-world image denoising
% by processing the YUV channels insead of RGB channels, it would improve
% TWSC by 0.1dB on PSNR.
% Author: Jun Xu, [email protected] / [email protected]
% The Hong Kong Polytechnic University
%
% Please refer to the following paper if you find this code helps:
%
% @article{TWSC_ECCV2018,
% author = {Jun Xu and Lei Zhang and David Zhang},
% title = {A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising},
% journal = {ECCV},
% year = {2018}
% }
% Please see the file License.txt for the license governing this code.
%-------------------------------------------------------------------------------------------------------------
clear;
Original_image_dir = '../dnd_2017/images_srgb/';
fpath = fullfile(Original_image_dir, '*.mat');
im_dir = dir(fpath);
im_num = length(im_dir);
load '../dnd_2017/info.mat';
method = 'TWSCrgb2yuv';
dataset = 'dnd_2017';
% write image directory
write_MAT_dir = ['/home/csjunxu/Paper/DeNoise/Results_' dataset '/'];
write_sRGB_dir = [write_MAT_dir method];
if ~isdir(write_sRGB_dir)
mkdir(write_sRGB_dir)
end
% Parameters
Par.ps = 6; % patch size
Par.step = 3; % the step of two neighbor patches
Par.win = 20; % size of window around the patch
Par.Outerloop = 8;
Par.Innerloop = 2;
Par.nlspini = 70;
Par.display = 0;
Par.delta = 0;
Par.nlspgap = 0; %10
Par.lambda1 = 0;
% Par.lambda2 = 3;
for lambda2 = [3]
Par.lambda2 =lambda2;
for i = 1:im_num
Par.image = i;
load(fullfile(Original_image_dir, im_dir(i).name));
S = regexp(im_dir(i).name, '\.', 'split');
[h,w,ch] = size(InoisySRGB);
% iterate over bounding boxes
Idenoised_crop_bbs = cell(1,20);
for j = 1:size(info(1).boundingboxes,1)
Par.nlsp = Par.nlspini; % number of non-local patches
IMinname = [S{1} '_' num2str(j)];
bb = info(i).boundingboxes(j,:);
Par.nim = InoisySRGB(bb(1):bb(3), bb(2):bb(4),:);
Par.I = Par.nim;
Par.nim = rgb2ycbcr(Par.nim);
[h,w,ch] = size(Par.nim);
% noise estimation
for c = 1:ch
Par.nSig(c) = NoiseEstimation(Par.nim(:, :, c)*255, Par.ps)/255;
end
[IMout, Par] = TWSC_Sigma_RW(Par);
IMout = ycbcr2rgb(IMout);
fprintf('%s: \n', IMinname);
%% output
imwrite(IMout, [write_sRGB_dir '/' method '_' dataset '_' num2str(lambda2) '_' IMinname '.png']);
Idenoised_crop_bbs{j} = single(IMout);
end
for j = 1:size(info(1).boundingboxes,1)
Idenoised_crop = Idenoised_crop_bbs{j};
save(fullfile(write_MAT_dir, sprintf('%04d_%02d.mat', i, j)), 'Idenoised_crop');
end
fprintf('Image %d/%d done\n', i,50);
end
% generate submission files
bundle_submission_srgb( write_MAT_dir, lambda2 );
end