-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmisc.ml
1722 lines (1501 loc) · 70.2 KB
/
misc.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0 OR ISC OR MIT-0
*)
(* ========================================================================= *)
(* Miscellaneous theorems that don't quite fit in the main libraries. *)
(* ========================================================================= *)
needs "Library/bitsize.ml";;
needs "Library/floor.ml";;
needs "Library/iter.ml";;
needs "Library/pocklington.ml";;
needs "Library/rstc.ml";;
needs "Library/words.ml";;
(* ------------------------------------------------------------------------- *)
(* A function that checks no axiom was introduced from s2n-bignum *)
(* ------------------------------------------------------------------------- *)
let check_axioms () =
let basic_axioms = [INFINITY_AX; SELECT_AX; ETA_AX] in
let l = filter (fun th -> not (mem th basic_axioms)) (axioms()) in
if l <> [] then
let msg = "[" ^ (String.concat ", " (map string_of_thm l)) ^ "]" in
failwith ("Unknown axiom exists: " ^ msg);;
(* ------------------------------------------------------------------------- *)
(* Additional list operations and conversions on them. *)
(* ------------------------------------------------------------------------- *)
let SUB_LIST = define
`SUB_LIST (0,0) l = [] /\
SUB_LIST (SUC m,n) [] = [] /\
SUB_LIST (0,SUC n) [] = [] /\
SUB_LIST (0,SUC n) (CONS h t) = CONS h (SUB_LIST (0,n) t) /\
SUB_LIST (SUC m,n) (CONS h t) = SUB_LIST (m,n) t`;;
let SUB_LIST_CLAUSES = prove
(`SUB_LIST (m,0) (l:A list) = [] /\
SUB_LIST (m,n) [] = [] /\
SUB_LIST (SUC m,n) (CONS h t) = SUB_LIST (m,n) t /\
SUB_LIST (0,SUC n) (CONS h t) = CONS h (SUB_LIST (0,n) t)`,
REWRITE_TAC[SUB_LIST] THEN CONJ_TAC THENL
[ALL_TAC; METIS_TAC[SUB_LIST; num_CASES]] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`l:A list`; `m:num`] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_LIST] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_LIST]);;
let SUB_LIST_LENGTH = prove
(`!l. SUB_LIST(0,LENGTH l) l = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_LIST_CLAUSES; LENGTH]);;
let SUB_LIST_SPLIT = prove
(`!l m n p. SUB_LIST(p,m+n) l = APPEND (SUB_LIST(p,m) l) (SUB_LIST(p+m,n) l)`,
LIST_INDUCT_TAC THEN REPEAT
(INDUCT_TAC THEN ASM_SIMP_TAC[SUB_LIST_CLAUSES; ADD_CLAUSES; APPEND]) THEN
REWRITE_TAC[APPEND_NIL] THEN ASM_MESON_TAC[ADD_CLAUSES]);;
let SUB_LIST_TOPSPLIT = prove
(`!l n. APPEND (SUB_LIST(0,n) l) (SUB_LIST(n,LENGTH l - n) l) = l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[SUB_LIST_CLAUSES; APPEND] THEN
INDUCT_TAC THEN
ASM_REWRITE_TAC[SUB_LIST_CLAUSES; ADD_CLAUSES; APPEND;
LENGTH; SUB_0; SUB_SUC; SUB_LIST_LENGTH]);;
let LENGTH_SUB_LIST = prove
(`!l m n. LENGTH(SUB_LIST(m,n) l) = MIN n (LENGTH l - m)`,
LIST_INDUCT_TAC THEN
REWRITE_TAC[SUB_LIST_CLAUSES; LENGTH; SUB_0] THEN
REPEAT
(INDUCT_TAC THEN ASM_SIMP_TAC[SUB_LIST_CLAUSES; ADD_CLAUSES; LENGTH]) THEN
ARITH_TAC);;
let SUB_LIST_TRIVIAL = prove
(`!l m n. LENGTH l <= m ==> SUB_LIST(m,n) l = []`,
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_SUB_LIST] THEN ARITH_TAC);;
let SUB_LIST_IDEMPOTENT = prove(
`!n (l:(A)list). SUB_LIST (0,n) (SUB_LIST (0,n) l) = SUB_LIST (0,n) l`,
INDUCT_TAC THENL[
REWRITE_TAC[SUB_LIST_CLAUSES];
STRIP_TAC THEN
DISJ_CASES_TAC (ISPEC `l:(A)list` list_CASES) THENL [
ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUB_LIST_CLAUSES];
ALL_TAC
] THEN
FIRST_X_ASSUM MP_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUB_LIST_CLAUSES] THEN
ASM_REWRITE_TAC[]
]);;
let SUB_LIST_MIN = prove(
`!(l:(A)list) (n:num) m. SUB_LIST (0,n) (SUB_LIST (0,m) l) = SUB_LIST (0, MIN n m) l`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `(m:num) <= n` THENL [
FIRST_X_ASSUM MP_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUB_LIST_SPLIT;ADD_CLAUSES;ARITH_RULE`MIN ((x:num)+y) x = x`] THEN
REWRITE_TAC[SUB_LIST_IDEMPOTENT] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM APPEND_NIL] THEN
AP_TERM_TAC THEN MATCH_MP_TAC SUB_LIST_TRIVIAL THEN
REWRITE_TAC[LENGTH_SUB_LIST] THEN ARITH_TAC;
FIRST_X_ASSUM MP_TAC THEN REWRITE_TAC[NOT_LE;LT_EXISTS] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUB_LIST_SPLIT;ADD_CLAUSES;ARITH_RULE`MIN (x:num) (x+y) = x`] THEN
MAP_EVERY SPEC1_TAC [`n:num`;`l:(A)list`] THEN
LIST_INDUCT_TAC THENL [
REWRITE_TAC[APPEND_NIL;SUB_LIST_CLAUSES];
STRIP_TAC THEN
DISJ_CASES_TAC (SPEC `n':num` num_CASES) THENL [
ASM_REWRITE_TAC[SUB_LIST_CLAUSES];
FIRST_X_ASSUM MP_TAC THEN DISCH_THEN (CHOOSE_THEN SUBST_ALL_TAC) THEN
REWRITE_TAC[SUB_LIST_CLAUSES;APPEND] THEN
ASM_REWRITE_TAC[]
]
]
]);;
let TRIM_LIST = define
`TRIM_LIST (h,t) l = SUB_LIST (h,LENGTH l - (h + t)) l`;;
let rec LENGTH_CONV =
let conv0 = GEN_REWRITE_CONV I [CONJUNCT1 LENGTH]
and conv1 = GEN_REWRITE_CONV I [CONJUNCT2 LENGTH] in
let rec conv tm =
(conv0 ORELSEC (conv1 THENC RAND_CONV conv THENC NUM_SUC_CONV)) tm in
conv;;
let SUB_LIST_CONV =
let [cth1;cth2;cth3;cth4] = CONJUNCTS SUB_LIST_CLAUSES in
let conv0 = GEN_REWRITE_CONV I [cth1; cth2]
and conv1 = GEN_REWRITE_CONV I [cth3]
and conv2 = GEN_REWRITE_CONV I [cth4] in
let rec conv tm =
(conv0 ORELSEC
(LAND_CONV(LAND_CONV num_CONV) THENC conv1 THENC conv) ORELSEC
(LAND_CONV(RAND_CONV num_CONV) THENC conv2 THENC RAND_CONV conv)) tm in
conv;;
let TRIM_LIST_CONV =
GEN_REWRITE_CONV I [TRIM_LIST] THENC
LAND_CONV(RAND_CONV
((BINOP2_CONV LENGTH_CONV NUM_ADD_CONV) THENC
NUM_SUB_CONV)) THENC
SUB_LIST_CONV;;
(* ------------------------------------------------------------------------- *)
(* Combined word and number and a few other things reduction. *)
(* ------------------------------------------------------------------------- *)
let WORD_NUM_RED_CONV =
WORD_RED_CONV ORELSEC
NUM_RED_CONV ORELSEC
INT_RED_CONV ORELSEC
DIMINDEX_CONV ORELSEC
GEN_REWRITE_CONV I [BITVAL_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Trivial but requires two distinct library files to be combined. *)
(* ------------------------------------------------------------------------- *)
let RELPOW_ITER = prove
(`!f n x y:A. RELPOW n (\a b. f a = b) x y <=> ITER n f x = y`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[RELPOW; ITER] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Some specialized lemmas that come up when shifts are masked to 6 bits. *)
(* ------------------------------------------------------------------------- *)
let MOD_64_CLAUSES = prove
(`(!c. val(word(c MOD 64):int64) = c MOD 64) /\
(!c. val(word(c MOD 256):byte) = c MOD 256) /\
(!c. val(word c:int64) MOD 64 = c MOD 64) /\
(!n. n MOD 256 MOD 64 = n MOD 64) /\
(!n. n MOD 64 MOD 64 = n MOD 64) /\
(!n. n MOD 2 EXP 64 MOD 64 = n MOD 64) /\
(!n. n MOD 64 MOD 2 EXP 64 = n MOD 64)`,
REWRITE_TAC[VAL_WORD; DIMINDEX_8; DIMINDEX_64] THEN
ABBREV_TAC `e = 2 EXP 64` THEN
REWRITE_TAC[ARITH_RULE `64 = 2 EXP 6 /\ 256 = 2 EXP 8`] THEN
EXPAND_TAC "e" THEN REWRITE_TAC[MOD_MOD_EXP_MIN] THEN
CONV_TAC NUM_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* To undo expansion of the way CSETM is done (should tweak ARM_STEP_TAC?) *)
(* ------------------------------------------------------------------------- *)
let WORD_UNMASK_64 = prove
(`(if p then word 18446744073709551615 else word 0):int64 =
word_neg(word(bitval p)) /\
(if p then word 0 else word 18446744073709551615):int64 =
word_neg(word(bitval(~p)))`,
COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN
CONV_TAC WORD_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Proving equality throwing away some other MSB multiples. *)
(* ------------------------------------------------------------------------- *)
let EQUAL_FROM_CONGRUENT_REAL = prove
(`!n x y z.
(&0 <= x /\ x < &2 pow n) /\
(&0 <= y /\ y < &2 pow n) /\
integer z /\ integer((x - y) / &2 pow n + z)
==> x = y`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`z:real`; `(x - y) / &2 pow n + z:real`]
REAL_EQ_INTEGERS) THEN
ASM_REWRITE_TAC[REAL_ARITH `z:real = x + z <=> x = &0`] THEN
REWRITE_TAC[REAL_ARITH `abs(z - (x + z)):real = abs x`] THEN
REWRITE_TAC[REAL_DIV_EQ_0; REAL_POW_EQ_0; REAL_SUB_0] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NUM] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_POW2] THEN ASM_REAL_ARITH_TAC);;
let EQUAL_FROM_CONGRUENT_MOD = prove
(`!n x y z.
&y:real < &2 pow n /\
integer z /\ integer((&x - &y) / &2 pow n + z)
==> x MOD (2 EXP n) = y`,
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LT; MOD_UNIQUE] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[num_congruent; int_congruent] THEN
EXISTS_TAC `int_of_real(((&x - &y) / &(2 EXP n) + z) - z)` THEN
REWRITE_TAC[int_eq; int_mul_th; int_sub_th] THEN
ASM_SIMP_TAC[REAL_OF_INT_OF_REAL; INTEGER_CLOSED] THEN
REWRITE_TAC[int_of_num_th; GSYM REAL_OF_NUM_POW] THEN
CONV_TAC REAL_FIELD);;
let EQUAL_FROM_CONGRUENT_MOD_MOD = prove
(`!n m r k r'.
r < 2 EXP k /\ m < 2 EXP k /\ ~(m = 0) /\
integer((&r - r') / &2 pow k) /\
&(n MOD m) = r'
==> n MOD m = r`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN
MP_TAC(SPECL [`(&r - r') / &2 pow k`; `&0`] REAL_EQ_INTEGERS_IMP) THEN
ASM_REWRITE_TAC[INTEGER_CLOSED; REAL_SUB_RZERO] THEN
ANTS_TAC THENL [ALL_TAC; CONV_TAC REAL_FIELD] THEN
SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_ABS_POW;
REAL_LT_LDIV_EQ; REAL_LT_POW2] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x < e /\ &0 <= y /\ y < e ==> abs(x - y) < &1 * e`) THEN
EXPAND_TAC "r'" THEN REWRITE_TAC[REAL_OF_NUM_CLAUSES; LE_0] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LT_TRANS; MOD_LT_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Definition of limbs = general (power of 2 size) digits. *)
(* ------------------------------------------------------------------------- *)
let limb = new_definition
`limb w n i = (n DIV (2 EXP (w * i)) MOD (2 EXP w))`;;
let LIMB_0 = prove
(`!w i. limb w 0 i = 0`,
REWRITE_TAC[limb; DIV_0; MOD_0]);;
let LIMB_BOUND = prove
(`!w n i. limb w n i < 2 EXP w`,
REWRITE_TAC[limb; MOD_LT_EQ; EXP_EQ_0; ARITH_EQ]);;
let DIGITSUM_WORDS_LIMB_GEN = prove
(`!w n k. nsum {i | i < k} (\i. 2 EXP (w * i) * limb w n i) =
n MOD (2 EXP (w * k))`,
REWRITE_TAC[limb; EXP_MULT; DIGITSUM_WORKS_GEN]);;
let DIGITSUM_WORKS_LIMB = prove
(`!w n k. n < 2 EXP (w * k)
==> nsum {i | i < k} (\i. 2 EXP (w * i) * limb w n i) = n`,
REWRITE_TAC[limb; EXP_MULT; DIGITSUM_WORKS]);;
let LIMB_DIGITSUM = prove
(`!w n k d.
(!i. i < k ==> d i < 2 EXP w)
==> limb w (nsum {i | i < k} (\i. 2 EXP (w * i) * d i)) n =
if n < k then d n else 0`,
REPEAT STRIP_TAC THEN REWRITE_TAC[limb; EXP_MULT] THEN
ASM_SIMP_TAC[DIGITSUM_DIV_MOD; IN_ELIM_THM; FINITE_NUMSEG_LT]);;
(* ------------------------------------------------------------------------- *)
(* More digit sum lemmas, not needed for Asm/words.ml itself so here. *)
(* ------------------------------------------------------------------------- *)
let DIGITSUM_LT_STEP = prove
(`!B b k n.
0 < B /\ (!i. i < k ==> b i < B)
==> (nsum {i | i < k} (\i. B EXP i * b i) < B EXP n <=>
k <= n \/
b n = 0 /\ nsum {i | i < k} (\i. B EXP i * b i) < B EXP (n + 1))`,
REPEAT GEN_TAC THEN SIMP_TAC[LE_1; GSYM DIV_EQ_0; EXP_LT_0] THEN
SIMP_TAC[DIGITSUM_DIV; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[SET_RULE
`{i | P i /\ Q i} = {i | i IN {j | P j} /\ Q i}`] THEN
SIMP_TAC[NSUM_EQ_0_IFF; FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN
REWRITE_TAC[ARITH_RULE `0 < b <=> ~(b = 0)`; EXP_EQ_0; MULT_EQ_0] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN
MP_TAC(ARITH_RULE `!i. n <= i <=> i = n \/ n + 1 <= i`) THEN
MESON_TAC[LT_REFL; NOT_LE; LE_TRANS; LT_TRANS; LET_TRANS]);;
let VAL_BOUND_64 = prove
(`!x:int64. val x < 2 EXP 64`,
GEN_TAC THEN MP_TAC(ISPEC `x:int64` VAL_BOUND) THEN
REWRITE_TAC[DIMINDEX_64]);;
let LEXICOGRAPHIC_LT = prove
(`!B h l h' l':num.
l < B /\ l' < B
==> (B * h + l < B * h' + l' <=> h < h' \/ h = h' /\ l < l')`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `h:num = h'` THEN
ASM_REWRITE_TAC[LT_ADD_LCANCEL; LT_REFL] THEN MATCH_MP_TAC(ARITH_RULE
`~(x = y) /\
(x < y ==> a + e * x < b + e * y) /\ (y < x ==> b + e * y < a + e * x)
==> (e * x + a:num < e * y + b <=> x < y)`) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE
`a < e /\ b < e /\ (x < y ==> e * (x + 1) <= e * y)
==> x < y ==> a + e * x < b + e * y`) THEN
ASM_REWRITE_TAC[LE_MULT_LCANCEL] THEN ARITH_TAC);;
let LEXICOGRAPHIC_LE = prove
(`!B h l h' l':num.
l < B /\ l' < B
==> (B * h + l <= B * h' + l' <=> h < h' \/ h = h' /\ l <= l')`,
SIMP_TAC[GSYM NOT_LT; LEXICOGRAPHIC_LT] THEN ARITH_TAC);;
let LEXICOGRAPHIC_EQ = prove
(`!B h l h' l':num.
l < B /\ l' < B
==> (B * h + l = B * h' + l' <=> h = h' /\ l = l')`,
SIMP_TAC[GSYM LE_ANTISYM; LEXICOGRAPHIC_LE] THEN ARITH_TAC);;
let LEXICOGRAPHIC_LT_64 = prove
(`!h l h' l'.
l < 2 EXP 64 /\ l' < 2 EXP 64
==> (2 EXP 64 * h + l < 2 EXP 64 * h' + l' <=>
h < h' \/ h = h' /\ l < l')`,
REWRITE_TAC[LEXICOGRAPHIC_LT]);;
let LEXICOGRAPHIC_LE_64 = prove
(`!h l h' l'.
l < 2 EXP 64 /\ l' < 2 EXP 64
==> (2 EXP 64 * h + l <= 2 EXP 64 * h' + l' <=>
h < h' \/ h = h' /\ l <= l')`,
REWRITE_TAC[LEXICOGRAPHIC_LE]);;
let LEXICOGRAPHIC_EQ_64 = prove
(`!h l h' l'.
l < 2 EXP 64 /\ l' < 2 EXP 64
==> (2 EXP 64 * h + l = 2 EXP 64 * h' + l' <=> h = h' /\ l = l')`,
REWRITE_TAC[LEXICOGRAPHIC_EQ]);;
let LEXICOGRAPHIC_LT_INT64 = prove
(`!h (l:int64) h' (l':int64).
2 EXP 64 * h + val l < 2 EXP 64 * h' + val l' <=>
h < h' \/ h = h' /\ val l < val l'`,
SIMP_TAC[LEXICOGRAPHIC_LT_64; VAL_BOUND_64]);;
let LEXICOGRAPHIC_LE_INT64 = prove
(`!h (l:int64) h' (l':int64).
2 EXP 64 * h + val l <= 2 EXP 64 * h' + val l' <=>
h < h' \/ h = h' /\ val l <= val l'`,
SIMP_TAC[LEXICOGRAPHIC_LE_64; VAL_BOUND_64]);;
let LEXICOGRAPHIC_EQ_INT64 = prove
(`!h (l:int64) h' (l':int64).
2 EXP 64 * h + val l = 2 EXP 64 * h' + val l' <=> h = h' /\ l = l'`,
SIMP_TAC[GSYM VAL_EQ; LEXICOGRAPHIC_EQ_64; VAL_BOUND_64]);;
(* ------------------------------------------------------------------------- *)
(* More word lemmas needing a few other theories so not in library. *)
(* ------------------------------------------------------------------------- *)
let WORD_CTZ_INDEX = prove
(`!x:N word.
word_ctz x = if x = word 0 then dimindex(:N) else index 2 (val x)`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[WORD_CTZ_0] THEN
MATCH_MP_TAC(MESON[LE_ANTISYM] `(!k:num. k <= m <=> k <= n) ==> m = n`) THEN
REWRITE_TAC[LE_INDEX; WORD_LE_CTZ_VAL] THEN
X_GEN_TAC `k:num` THEN ASM_REWRITE_TAC[ARITH_EQ; VAL_EQ_0] THEN
REWRITE_TAC[TAUT `(p /\ q <=> q) <=> q ==> p`] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_REWRITE_TAC[VAL_EQ_0] THEN
DISCH_THEN(MP_TAC o MATCH_MP (MESON[VAL_BOUND; LET_TRANS]
`a <= val(x:N word) ==> a < 2 EXP dimindex(:N)`)) THEN
SIMP_TAC[LT_EXP; ARITH_EQ; LT_IMP_LE]);;
let WORD_CLZ_BITSIZE = prove
(`!x:N word. word_clz x = dimindex(:N) - bitsize(val x)`,
REWRITE_TAC[WORD_CLZ; bitsize]);;
(* ------------------------------------------------------------------------- *)
(* More ad hoc lemmas. *)
(* ------------------------------------------------------------------------- *)
let WORD_INDEX_WRAP = prove
(`!i. word(8 * (i + 1) + 18446744073709551608):int64 = word(8 * i)`,
GEN_TAC THEN REWRITE_TAC[LEFT_ADD_DISTRIB; GSYM ADD_ASSOC] THEN
ONCE_REWRITE_TAC[WORD_ADD] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC WORD_REDUCE_CONV THEN
REWRITE_TAC[WORD_ADD_0]);;
let MOD_UNIQ_BALANCED = prove
(`!n p z q.
q * p <= n + p /\ n < q * p + p /\
q * p + z = bitval(n < q * p) * p + n
==> n MOD p = z`,
REPEAT GEN_TAC THEN REWRITE_TAC[bitval] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MOD_UNIQ THENL
[EXISTS_TAC `q - 1`; EXISTS_TAC `q:num` THEN ASM_ARITH_TAC] THEN
CONJ_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `n + p = (q + 1) * p + z ==> n = q * p + z`) THEN
ASM_CASES_TAC `q = 0` THENL [ASM_MESON_TAC[LT; MULT_CLAUSES]; ALL_TAC] THEN
ASM_SIMP_TAC[SUB_ADD; LE_1] THEN ASM_ARITH_TAC);;
let MOD_UNIQ_BALANCED_REAL = prove
(`!n p z q k.
p < 2 EXP k /\ z < 2 EXP k /\
q * p <= n + p /\ n < q * p + p /\
integer((&n - &z - (&q - &(bitval(n < q * p))) * &p) / &2 pow k)
==> n MOD p = z`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MOD_UNIQ_BALANCED THEN
EXISTS_TAC `q:num` THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC I [GSYM REAL_OF_NUM_EQ] THEN
MATCH_MP_TAC(REAL_FIELD `!k. (y - x) / &2 pow k = &0 ==> x = y`) THEN
EXISTS_TAC `k:num` THEN MATCH_MP_TAC REAL_EQ_INTEGERS_IMP THEN
REWRITE_TAC[INTEGER_CLOSED] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[]
`integer x ==> x = y ==> integer y`)) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_CLAUSES] THEN REAL_ARITH_TAC;
REWRITE_TAC[REAL_SUB_RZERO; REAL_ABS_DIV; REAL_ABS_POW] THEN
SIMP_TAC[REAL_ABS_NUM; REAL_LT_LDIV_EQ; REAL_LT_POW2]] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LT])) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE]) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[GSYM REAL_OF_NUM_CLAUSES] THEN
REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REAL_ARITH_TAC);;
let INT_REM_UNIQ_BALANCED = prove
(`!n p z q.
q * p <= n + p /\ n < q * p + p /\
q * p + z = &(bitval(n < q * p)) * p + n
==> n rem p = z`,
REPEAT GEN_TAC THEN REWRITE_TAC[bitval] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC INT_REM_UNIQ THENL
[EXISTS_TAC `q - &1:int`; EXISTS_TAC `q:int`] THEN
ASM_INT_ARITH_TAC);;
let INT_REM_UNIQ_BALANCED_MOD = prove
(`!n p z q k.
&0 <= p /\ p < &2 pow k /\
&0 <= z /\ z < &2 pow k /\
q * p <= n + p /\ n < q * p + p /\
(q * p + z == &(bitval(n < q * p)) * p + n) (mod (&2 pow k))
==> n rem p = z`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INT_REM_UNIQ_BALANCED THEN
EXISTS_TAC `q:int` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[INT_ARITH `a + b:int = c <=> b = c - a`] THEN
MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `(&2:int) pow k` THEN
ASM_REWRITE_TAC[INTEGER_RULE
`(b:int == c - a) (mod p) <=> (a + b == c) (mod p)`] THEN
REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_INT_ARITH_TAC);;
let VAL_WORD_SUBWORD_JOIN_64 = prove
(`!(h:int64) (l:int64) k.
k <= 64
==> val(word_subword (word_join h l:int128) (k,64) :int64) =
2 EXP (64 - k) * val h MOD 2 EXP k + val l DIV (2 EXP k)`,
REWRITE_TAC[GSYM DIMINDEX_64; VAL_WORD_SUBWORD_JOIN_FULL]);;
(* ------------------------------------------------------------------------- *)
(* Alternative formulations for carry conditions as expressed abstractly. *)
(* ------------------------------------------------------------------------- *)
let NOCARRY_WORD_ADC = prove
(`!b x y:N word.
val x + val y + bitval b =
val(word_add (word_add x y) (word (bitval b))) <=>
val x + val y + bitval b < 2 EXP dimindex(:N)`,
REWRITE_TAC[VAL_WORD_ADD; VAL_WORD_BITVAL] THEN
REPEAT GEN_TAC THEN CONV_TAC MOD_DOWN_CONV THEN
GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN
REWRITE_TAC[GSYM ADD_ASSOC; MOD_EQ_SELF] THEN
REWRITE_TAC[ARITH_EQ; EXP_EQ_0]);;
let CARRY_WORD_ADC = prove
(`!b x y:N word.
~(val x + val y + bitval b =
val(word_add (word_add x y) (word (bitval b)))) <=>
2 EXP dimindex(:N) <= val x + val y + bitval b`,
REWRITE_TAC[NOCARRY_WORD_ADC; NOT_LT]);;
let NOCARRY_WORD_ADD = prove
(`!x y:N word.
val x + val y = val(word_add x y) <=>
val x + val y < 2 EXP dimindex(:N)`,
MP_TAC(SPEC `F` NOCARRY_WORD_ADC) THEN
REWRITE_TAC[BITVAL_CLAUSES; ADD_CLAUSES] THEN
REWRITE_TAC[WORD_RULE `word_add x (word 0) = x`]);;
let CARRY_WORD_ADD = prove
(`!x y:N word.
~(val x + val y = val(word_add x y)) <=>
2 EXP dimindex(:N) <= val x + val y`,
REWRITE_TAC[NOCARRY_WORD_ADD; NOT_LT]);;
let NOCARRY_WORD_SBB = prove
(`!b x y:N word.
&(val x) - (&(val y) + &(bitval b)):int =
&(val(word_sub x (word_add y (word(bitval b))))) <=>
if b then val y < val x else val y <= val x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN CONV_TAC WORD_ARITH);;
let CARRY_WORD_SBB = prove
(`!b x y:N word.
~(&(val x) - (&(val y) + &(bitval b)):int =
&(val(word_sub x (word_add y (word(bitval b)))))) <=>
if b then val x <= val y else val x < val y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN CONV_TAC WORD_ARITH);;
let NOCARRY_WORD_SUB = prove
(`!x y:N word.
&(val x) - &(val y):int = &(val(word_sub x y)) <=>
val y <= val x`,
MP_TAC(SPEC `F` NOCARRY_WORD_SBB) THEN
REWRITE_TAC[BITVAL_CLAUSES; INT_ADD_RID] THEN
REWRITE_TAC[WORD_RULE `word_add x (word 0) = x`]);;
let CARRY_WORD_SUB = prove
(`!x y:N word.
~(&(val x) - &(val y):int = &(val(word_sub x y))) <=>
val x < val y`,
REWRITE_TAC[NOCARRY_WORD_SUB; NOT_LE]);;
(* ------------------------------------------------------------------------- *)
(* More concrete versions for 64-bit words etc. *)
(* ------------------------------------------------------------------------- *)
let NOCARRY_THM = prove
(`!x:int64. 2 EXP 64 <= val x <=> F`,
GEN_TAC THEN REWRITE_TAC[NOT_LE] THEN
MP_TAC(ISPEC `x:int64` VAL_BOUND) THEN
REWRITE_TAC[DIMINDEX_64] THEN ARITH_TAC);;
let NOCARRY64_ADC = prove
(`!b x y:int64.
(val x + val y + bitval b =
val(word_add (word_add x y) (word (bitval b)))) <=>
val x + val y + bitval b < 2 EXP 64`,
REWRITE_TAC[NOCARRY_WORD_ADC; DIMINDEX_64]);;
let CARRY64_ADC = prove
(`!b x y:int64.
~(val x + val y + bitval b =
val(word_add (word_add x y) (word (bitval b)))) <=>
2 EXP 64 <= val x + val y + bitval b`,
REWRITE_TAC[CARRY_WORD_ADC; DIMINDEX_64]);;
let NOCARRY64_ADD = prove
(`!x y:int64.
(val x + val y = val(word_add x y)) <=>
val x + val y < 2 EXP 64`,
REWRITE_TAC[NOCARRY_WORD_ADD; DIMINDEX_64]);;
let CARRY64_ADD = prove
(`!x y:int64.
~(val x + val y = val(word_add x y)) <=>
2 EXP 64 <= val x + val y`,
REWRITE_TAC[CARRY_WORD_ADD; DIMINDEX_64]);;
let NOCARRY64_ADD_1 = prove
(`!x:int64.
(val x + 1 = val(word_add x (word 1))) <=>
val x + 1 < 2 EXP 64`,
METIS_TAC[NOCARRY64_ADD; VAL_WORD_1]);;
let CARRY64_ADD_1 = prove
(`!x:int64.
~(val x + 1 = val(word_add x (word 1))) <=>
2 EXP 64 <= val x + 1`,
METIS_TAC[CARRY64_ADD; VAL_WORD_1]);;
let NOCARRY64_SBB = prove
(`!b x y:int64.
(&(val x) - (&(val y) + &(bitval b)):int =
&(val(word_sub x (word_add y (word (bitval b)))))) <=>
val y + bitval b <= val x`,
REPEAT GEN_TAC THEN REWRITE_TAC[NOCARRY_WORD_SBB] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN ARITH_TAC);;
let CARRY64_SBB = prove
(`!b x y:int64.
~(&(val x) - (&(val y) + &(bitval b)):int =
&(val(word_sub x (word_add y (word (bitval b)))))) <=>
val x < val y + bitval b`,
REPEAT GEN_TAC THEN REWRITE_TAC[CARRY_WORD_SBB] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN ARITH_TAC);;
let NOCARRY64_SUB = prove
(`!x y:int64.
(&(val x) - &(val y):int = &(val(word_sub x y))) <=>
val y <= val x`,
REWRITE_TAC[NOCARRY_WORD_SUB]);;
let CARRY64_SUB = prove
(`!x y:int64.
~(&(val x) - &(val y):int = &(val(word_sub x y))) <=>
val x < val y`,
REWRITE_TAC[CARRY_WORD_SUB]);;
let ACCUMULATE_ADC = prove
(`!b x y:int64.
val(x) + val(y) + val(word(bitval b):int64) =
2 EXP 64 * bitval(2 EXP 64 <= val x + val y + bitval b) +
val(word_add (word_add x y) (word (bitval b)))`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NOT_LT] THEN
SIMP_TAC[VAL_WORD_ADC_CASES; VAL_WORD_BITVAL; BITVAL_BOUND_ALT] THEN
REWRITE_TAC[DIMINDEX_64] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES; MULT_CLAUSES; ADD_CLAUSES] THEN
ASM_ARITH_TAC);;
let ACCUMULATE_ADC_0 = prove
(`!b x:int64.
val(x) + val(word(bitval b):int64) =
2 EXP 64 * bitval(2 EXP 64 <= val x + bitval b) +
val(word_add x (word (bitval b)))`,
REPEAT GEN_TAC THEN MP_TAC(SPECL [`b:bool`; `x:int64`; `word 0:int64`]
ACCUMULATE_ADC) THEN
REWRITE_TAC[WORD_ADD_0; VAL_WORD_0; ADD_CLAUSES]);;
let ACCUMULATE_ADD = prove
(`!x y:int64.
val(x) + val(y) =
2 EXP 64 * bitval(2 EXP 64 <= val x + val y) +
val(word_add x y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NOT_LT] THEN
SIMP_TAC[VAL_WORD_ADD_CASES; VAL_WORD_BITVAL; BITVAL_BOUND_ALT] THEN
REWRITE_TAC[DIMINDEX_64] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES; MULT_CLAUSES; ADD_CLAUSES] THEN
ASM_ARITH_TAC);;
let ACCUMULATE_SBB = prove
(`!b x y:int64.
2 EXP 64 * bitval(val x < val y + bitval b) + val x =
val(word_sub x (word_add y (word (bitval b)))) + val y + bitval b`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN POP_ASSUM(K ALL_TAC) THEN
REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
REWRITE_TAC[VAL_WORD_SUB_CASES; VAL_WORD_ADD_CASES;
VAL_WORD_0; VAL_WORD_1] THEN
MP_TAC(ISPEC `x:int64` VAL_BOUND) THEN
MP_TAC(ISPEC `y:int64` VAL_BOUND) THEN
REWRITE_TAC[DIMINDEX_64] THEN ASM_ARITH_TAC);;
let ACCUMULATE_SBB_RZERO = prove
(`!b x:int64.
2 EXP 64 * bitval(val x < bitval b) + val x =
val(word_sub x (word (bitval b))) + bitval b`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`b:bool`; `x:int64`; `word 0:int64`] ACCUMULATE_SBB) THEN
REWRITE_TAC[VAL_WORD_0; ADD_CLAUSES; MULT_CLAUSES] THEN
DISCH_THEN SUBST1_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN CONV_TAC WORD_RULE);;
let ACCUMULATE_SBB_LZERO = prove
(`!b x:int64.
2 EXP 64 * bitval(0 < val x + bitval b) =
val(word_neg(word_add x (word (bitval b)))) + val x + bitval b`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`b:bool`; `word 0:int64`; `x:int64`] ACCUMULATE_SBB) THEN
REWRITE_TAC[VAL_WORD_0; ADD_CLAUSES; MULT_CLAUSES] THEN
DISCH_THEN SUBST1_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN CONV_TAC WORD_RULE);;
let ACCUMULATE_SUB = prove
(`!x y:int64.
2 EXP 64 * bitval(val x < val y) + val x =
val(word_sub x y) + val y`,
MP_TAC(SPEC `F` ACCUMULATE_SBB) THEN
REWRITE_TAC[BITVAL_CLAUSES; ADD_CLAUSES; WORD_ADD_0]);;
let ACCUMULATE_MUL_GEN = prove
(`!(x:N word) (y:N word).
2 EXP dimindex(:N) *
val(word_zx (word_ushr
(word(val x * val y):(N tybit0)word) (dimindex(:N))):N word) +
val(word_zx (word(val x * val y):(N tybit0)word):N word) =
val x * val y`,
REPEAT GEN_TAC THEN
REWRITE_TAC[VAL_WORD_ZX_GEN; VAL_WORD_USHR] THEN
REWRITE_TAC[GSYM MOD_MULT_MOD] THEN
REWRITE_TAC[VAL_WORD; GSYM EXP_ADD; DIMINDEX_TYBIT0; MULT_2] THEN
REWRITE_TAC[MOD_MOD_REFL] THEN MATCH_MP_TAC MOD_LT THEN
REWRITE_TAC[EXP_ADD] THEN MATCH_MP_TAC LT_MULT2 THEN
REWRITE_TAC[VAL_BOUND]);;
let ACCUMULATE_MUL = prove
(`!(x:int64) (y:int64).
2 EXP 64 *
val(word_zx (word_ushr
(word(val x * val y):(128)word) 64):int64) +
val(word_zx (word(val x * val y):(128)word):int64) =
val x * val y`,
REWRITE_TAC[GSYM DIMINDEX_64; ACCUMULATE_MUL_GEN]);;
(* ------------------------------------------------------------------------- *)
(* Variants to express in real-number terms with error bounds. *)
(* ------------------------------------------------------------------------- *)
let APPROXIMATE_WORD_USHR = prove
(`!(dest:int64) a n.
dest = word_ushr a n
==> ?b e. dest = b /\
&0 <= e /\ e <= &1 - inv(&2 pow n) /\
&(val b) = &(val a) / &2 pow n - e`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
ASM_REWRITE_TAC[VAL_WORD_USHR] THEN
REWRITE_TAC[UNWIND_THM1; REAL_ARITH
`&0 <= e /\ e <= u /\ x:real = y - e <=>
y - x = e /\ x <= y /\ y <= x + u`] THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_LT_POW2] THEN
REWRITE_TAC[REAL_FIELD
`(x + &1 - inv(&2 pow n)) * (&2 pow n) = (x + &1) * &2 pow n - &1`] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= y - x * e /\ (y - x * e) + &1 <= e
==> x * e <= y /\ y <= (x + &1) * e - &1`) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MOD; REAL_OF_NUM_POW] THEN
REWRITE_TAC[REAL_OF_NUM_CLAUSES; LE_0] THEN
REWRITE_TAC[ARITH_RULE `n + 1 <= m <=> n < m`] THEN
REWRITE_TAC[MOD_LT_EQ; EXP_EQ_0; ARITH_EQ]);;
let APPROXIMATE_WORD_SHL = prove
(`!(dest:int64) a n.
dest = word_shl a n
==> &2 pow n * &(val a):real < &2 pow 64
==> ?c. dest = c /\
&(val c):real = &2 pow n * &(val a)`,
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[UNWIND_THM1] THEN
REWRITE_TAC[VAL_WORD_SHL; REAL_OF_NUM_CLAUSES; DIMINDEX_64] THEN
ASM_SIMP_TAC[MOD_LT]);;
let APPROXIMATE_WORD_ADD = prove
(`!(dest:int64) a b.
dest = word_add a b
==> &(val a) + &(val b):real < &2 pow 64
==> ?c. dest = c /\
&(val c):real = &(val a) + &(val b)`,
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[UNWIND_THM1] THEN
REWRITE_TAC[VAL_WORD_ADD; REAL_OF_NUM_CLAUSES; DIMINDEX_64] THEN
ASM_SIMP_TAC[MOD_LT]);;
let APPROXIMATE_WORD_SUB = prove
(`!(dest:int64) a b.
dest = word_sub a b
==> &0 <= &(val a) - &(val b)
==> ?c. dest = c /\
&(val c) = &(val a) - &(val b)`,
REWRITE_TAC[REAL_SUB_LE; REAL_EQ_SUB_LADD; REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[UNWIND_THM1] THEN
ASM_REWRITE_TAC[VAL_WORD_SUB_CASES] THEN ASM_ARITH_TAC);;
let APPROXIMATE_WORD_MUL = prove
(`!(dest:int64) (a:int64) (b:int64).
dest = word(0 + val a * val b)
==> &(val a) * &(val b):real < &2 pow 64
==> ?c. dest = c /\
&(val c):real = &(val a) * &(val b)`,
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; UNWIND_THM1] THEN
ASM_SIMP_TAC[VAL_WORD_EQ; DIMINDEX_64]);;
let APPROXIMATE_WORD_MADD = prove
(`!(dest:int64) (a:int64) (b:int64) (c:int64).
dest = word(val a + val b * val c)
==> &(val a) + &(val b) * &(val c):real < &2 pow 64
==> ?d. dest = d /\
&(val d):real = &(val a) + &(val b) * &(val c)`,
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[UNWIND_THM1] THEN
ASM_SIMP_TAC[VAL_WORD_EQ; DIMINDEX_64]);;
let APPROXIMATE_WORD_MNEG = prove
(`!(dest:int64) (a:int64) (b:int64).
dest = iword(&0 - ival a * ival b)
==> &0 < &(val a) * &(val b):real /\
&(val a) * &(val b):real <= &2 pow 64
==> ?c. dest = c /\
&(val c):real = &2 pow 64 - &(val a) * &(val b)`,
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[UNWIND_THM1] THEN
REWRITE_TAC[INT_SUB_LZERO; REAL_EQ_SUB_LADD] THEN
REWRITE_TAC[REAL_OF_NUM_CLAUSES] THEN
REWRITE_TAC[GSYM INT_OF_NUM_CLAUSES] THEN
REWRITE_TAC[GSYM INT_EQ_SUB_LADD] THEN
MATCH_MP_TAC INT_CONG_IMP_EQ THEN
EXISTS_TAC `(&2:int) pow 64` THEN CONJ_TAC THENL
[W(MP_TAC o C SPEC VAL_BOUND_64 o
rand o rand o lhand o rand o lhand o snd) THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
REWRITE_TAC[GSYM INT_OF_NUM_CLAUSES] THEN INT_ARITH_TAC;
REWRITE_TAC[INTEGER_RULE
`(x:int == n - y) (mod n) <=> (x == --y) (mod n)`] THEN
REWRITE_TAC[REWRITE_RULE[GSYM INT_REM_EQ; DIMINDEX_64]
(INST_TYPE [`:64`,`:N`] VAL_IWORD_CONG); GSYM INT_REM_EQ] THEN
REWRITE_TAC[INT_REM_EQ] THEN MATCH_MP_TAC(INTEGER_RULE
`(a:int == a') (mod n) /\ (b == b') (mod n)
==> (--(a * b) == --(a' * b')) (mod n)`) THEN
REWRITE_TAC[REWRITE_RULE[DIMINDEX_64]
(INST_TYPE [`:64`,`:N`]IVAL_VAL_CONG)]]);;
let APPROXIMATE_WORD_IWORD = prove
(`!(dest:int64) x x'.
dest = iword x
==> &0 <= x' /\ x' < &2 pow 64 /\ (x == x') (mod (&2 pow 64))
==> ?c. dest = c /\
&(val c) = real_of_int x'`,
REWRITE_TAC[UNWIND_THM1; GSYM INT_REM_EQ] THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM int_of_num_th; GSYM int_eq] THEN
MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `(&2:int) pow 64` THEN
REWRITE_TAC[GSYM INT_REM_EQ; GSYM DIMINDEX_64] THEN
REWRITE_TAC[REWRITE_RULE[GSYM INT_REM_EQ] VAL_IWORD_CONG] THEN
ASM_REWRITE_TAC[DIMINDEX_64] THEN MATCH_MP_TAC(INT_ARITH
`&0 <= x /\ x < e /\ &0 <= y /\ y < e ==> abs(x - y:int) < e`) THEN
ASM_REWRITE_TAC[INT_POS] THEN
REWRITE_TAC[INT_OF_NUM_CLAUSES; VAL_BOUND_64]);;
(* ------------------------------------------------------------------------- *)
(* Some lemmas to get a flag out of a carry setting *)
(* ------------------------------------------------------------------------- *)
let FLAG_FROM_CARRY_REAL_LT = prove
(`!k x (y:real) p.
&0 <= &2 pow k * &(bitval p) + x - y /\
&2 pow k * &(bitval p) + x - y < &2 pow k
==> (p <=> x < y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN REAL_ARITH_TAC);;
let FLAG_FROM_CARRY_REAL_LE = prove
(`!k x (y:real) p.
&0 <= &2 pow k * (&1 - &(bitval p)) + y - x /\
&2 pow k * (&1 - &(bitval p)) + y - x < &2 pow k
==> (p <=> x <= y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN REAL_ARITH_TAC);;
let FLAG_FROM_CARRY_LT = prove
(`!k m n p.
&0:real <= &2 pow k * &(bitval p) + &m - &n /\
&2 pow k * &(bitval p) + &m - &n:real < &2 pow k
==> (p <=> m < n)`,
REWRITE_TAC[GSYM REAL_OF_NUM_LT; FLAG_FROM_CARRY_REAL_LT]);;
let FLAG_FROM_CARRY_LE = prove
(`!k m n p.
&0:real <= &2 pow k * (&1 - &(bitval p)) + &n - &m /\
&2 pow k * (&1 - &(bitval p)) + &n - &m:real < &2 pow k
==> (p <=> m <= n)`,
REWRITE_TAC[GSYM REAL_OF_NUM_LE; FLAG_FROM_CARRY_REAL_LE]);;
(* ------------------------------------------------------------------------- *)
(* Getting a word in {0,1} in a similar way. *)
(* ------------------------------------------------------------------------- *)
let WORD_FROM_CARRY_REAL_LT = prove
(`!k x (y:real) (w:N word).
y - x <= &2 pow k /\
&0 <= &2 pow k * &(val w) + x - y /\
&2 pow k * &(val w) + x - y < &2 pow k
==> w = word(bitval(x < y))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
MP_TAC(fst(EQ_IMP_RULE(SPEC `val(w:N word)` NUM_AS_BITVAL_ALT))) THEN
ANTS_TAC THENL
[REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
EXISTS_TAC `(&2 pow k):real` THEN REWRITE_TAC[REAL_LT_POW2] THEN
ASM_REAL_ARITH_TAC;
REWRITE_TAC[VAL_EQ_BITVAL] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[VAL_WORD_BITVAL]) THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP FLAG_FROM_CARRY_REAL_LT) THEN
REWRITE_TAC[]]);;
let WORD_FROM_CARRY_REAL_LE = prove
(`!k x (y:real) (w:N word).
y - x < &2 pow k /\
&0 <= &2 pow k * (&1 - &(val w)) + y - x /\
&2 pow k * (&1 - &(val w)) + y - x < &2 pow k
==> w = word(bitval(x <= y))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
MP_TAC(fst(EQ_IMP_RULE(SPEC `val(w:N word)` NUM_AS_BITVAL_ALT))) THEN
ANTS_TAC THENL
[REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
EXISTS_TAC `(&2 pow k):real` THEN REWRITE_TAC[REAL_LT_POW2] THEN
ASM_REAL_ARITH_TAC;
REWRITE_TAC[VAL_EQ_BITVAL] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[VAL_WORD_BITVAL]) THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP FLAG_FROM_CARRY_REAL_LE) THEN
REWRITE_TAC[]]);;
let WORD_FROM_CARRY_LT = prove
(`!k x y (w:N word).
y - x:real <= &2 pow k /\
&0:real <= &2 pow k * &(val w) + x - y /\
&2 pow k * &(val w) + x - y:real < &2 pow k
==> w = word(bitval(x < y))`,
REWRITE_TAC[GSYM REAL_OF_NUM_LT; WORD_FROM_CARRY_REAL_LT]);;
let WORD_FROM_CARRY_LE = prove
(`!k x (w:N word).
&y - &x < &2 pow k /\
&0 <= &2 pow k * (&1 - &(val w)) + &y - &x /\
&2 pow k * (&1 - &(val w)) + &y - &x < &2 pow k
==> w = word(bitval(x <= y))`,
REWRITE_TAC[GSYM REAL_OF_NUM_LE; WORD_FROM_CARRY_REAL_LE]);;
(* ------------------------------------------------------------------------- *)
(* An elaborated version for getting a flag and a mask word. *)
(* ------------------------------------------------------------------------- *)
let FLAG_AND_MASK_FROM_CARRY_REAL_LT = prove
(`!c (m:int64) k (x:real).
--(&2 pow k) <= x /\ x < &2 pow k /\
&0 <= x - &2 pow k * (&(val m) - &2 pow 64 * &(bitval c)) /\
x - &2 pow k * (&(val m) - &2 pow 64 * &(bitval c)) < &2 pow k
==> m = word_neg(word(bitval(x < &0))) /\
(c <=> x < &0)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `c:bool` THEN
ASM_REWRITE_TAC[BITVAL_CLAUSES; REAL_MUL_RZERO; REAL_MUL_RID;
REAL_SUB_RZERO; REAL_NOT_LT] THEN
STRIP_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH
`x - p * (m - c):real < p ==> p * &1 <= p * (c - m) ==> x < &0`)) THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_POW2] THEN
REWRITE_TAC[REAL_ARITH `&1:real <= x - y <=> y + &1 <= x`] THEN
SIMP_TAC[GSYM REAL_LT_INTEGERS; INTEGER_CLOSED] THEN
REWRITE_TAC[REAL_OF_NUM_CLAUSES; GSYM DIMINDEX_64; VAL_BOUND] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN
REWRITE_TAC[GSYM VAL_EQ_MAX_MASK; DIMINDEX_64] THEN
MATCH_MP_TAC(ARITH_RULE `m < e /\ e < m + 2 ==> m = e - 1`) THEN
REWRITE_TAC[GSYM DIMINDEX_64; VAL_BOUND] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_CLAUSES; DIMINDEX_64] THEN
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `(&2:real) pow k` THEN
REWRITE_TAC[REAL_LT_POW2] THEN ASM_REAL_ARITH_TAC;
MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`&0:real <= x - p ==> &0 <= p ==> &0 <= x`)) THEN
MATCH_MP_TAC REAL_LE_MUL THEN
REWRITE_TAC[REAL_OF_NUM_CLAUSES; REAL_POS];
SIMP_TAC[GSYM REAL_NOT_LE] THEN DISCH_TAC] THEN
REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0] THEN
REWRITE_TAC[GSYM VAL_EQ_0; ARITH_RULE `n = 0 <=> ~(1 <= n)`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH
`&0 <= x - p * m ==> x < p ==> ~(p * &1 <= p * m)`)) THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_POW2]]);;
let FLAG_AND_MASK_FROM_CARRY_LT = prove
(`!c (m:int64) k x y.
--(&2 pow k):real <= &x - &y /\ &x - &y:real < &2 pow k /\
&0:real <= &x - &y - &2 pow k * (&(val m) - &2 pow 64 * &(bitval c)) /\
&x - &y - &2 pow k * (&(val m) - &2 pow 64 * &(bitval c)):real
< &2 pow k
==> m = word_neg(word(bitval(x < y))) /\
(c <=> x < y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN
ONCE_REWRITE_TAC[REAL_ARITH `x:real < y <=> x - y < &0`] THEN
MATCH_MP_TAC FLAG_AND_MASK_FROM_CARRY_REAL_LT THEN
EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Yet more general formulations of similar patterns. *)
(* ------------------------------------------------------------------------- *)
let MASK_AND_VALUE_FROM_CARRY_REAL_LT = prove
(`!(m:int64) l k (x:real).
(--(&2 pow k) <= x /\ x < &2 pow k) /\
(&0 <= l /\ l < &2 pow k) /\
integer(((&2 pow k * &(val m) + l) - x) / &2 pow (k + 64))
==> m = word_neg(word(bitval(x < &0))) /\
l = if x < &0 then x + &2 pow k else x`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP
(MESON[REAL_DIV_RMUL]
`integer(x / y) ==> ~(y = &0) ==> ?n. integer n /\ x = n * y`)) THEN
SIMP_TAC[REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:real` THEN REWRITE_TAC[REAL_POW_ADD; REAL_ARITH
`(k * m + l) - x:real = n * k * e <=> l - x = k * (n * e - m)`] THEN