-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathresnet.py
69 lines (57 loc) · 2.58 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torch.nn as nn
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import torchvision.models.resnet as torch_resnet
from torchvision.models.resnet import BasicBlock, Bottleneck
model_urls = {'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
}
class ResNet(torch_resnet.ResNet):
def __init__(self, *args, **kwargs):
super(ResNet, self).__init__(*args, **kwargs)
def modify(self, remove_layers=[], padding=''):
# Set stride of layer3 and layer 4 to 1 (from 2)
filter_layers = lambda x: [l for l in x if getattr(self, l) is not None]
for layer in filter_layers(['layer3', 'layer4']):
for m in getattr(self, layer).modules():
if isinstance(m, torch.nn.Conv2d):
m.stride = tuple(1 for _ in m.stride)
print('stride', m)
# Set padding (zeros or reflect, doesn't change much;
# zeros requires lower temperature)
if padding != '':
for m in self.modules():
if isinstance(m, torch.nn.Conv2d) and sum(m.padding) > 0:
m.padding_mode = padding
print('padding', m)
# Remove extraneous layers
remove_layers += ['fc', 'avgpool']
for layer in filter_layers(remove_layers):
setattr(self, layer, None)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = x if self.maxpool is None else self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = x if self.layer3 is None else self.layer3(x)
x = x if self.layer4 is None else self.layer4(x)
return x
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model
def resnet18(pretrained=False, progress=True, **kwargs):
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet50(pretrained=False, progress=True, **kwargs) -> ResNet:
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)