-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy path__init__.py
87 lines (82 loc) · 3.62 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define activation functions of neural network
from . import rnn # noqa: F401
from . import transformer # noqa: F401
from . import container # noqa: F401
from .activation import PReLU # noqa: F401
from .activation import ReLU # noqa: F401
from .activation import ReLU6 # noqa: F401
from .activation import LeakyReLU # noqa: F401
from .activation import Sigmoid # noqa: F401
from .activation import Softmax # noqa: F401
from .activation import LogSoftmax # noqa: F401
from .common import Bilinear # noqa: F401
from .common import Pad1D # noqa: F401
from .common import Pad2D # noqa: F401
from .common import Pad3D # noqa: F401
from .common import CosineSimilarity # noqa: F401
from .common import Embedding # noqa: F401
from .common import Linear # noqa: F401
from .common import Identity # noqa: F401
from .common import Flatten # noqa: F401
from .common import Upsample # noqa: F401
from .common import Dropout # noqa: F401
from .common import Dropout2D # noqa: F401
from .common import Dropout3D # noqa: F401
from .common import AlphaDropout # noqa: F401
from .common import Upsample # noqa: F401
from .common import UpsamplingBilinear2D # noqa: F401
from .common import UpsamplingNearest2D # noqa: F401
from .pooling import AvgPool1D # noqa: F401
from .pooling import AvgPool2D # noqa: F401
from .pooling import AvgPool3D # noqa: F401
from .pooling import MaxPool1D # noqa: F401
from .pooling import MaxPool2D # noqa: F401
from .pooling import MaxPool3D # noqa: F401
from .pooling import AdaptiveAvgPool1D # noqa: F401
from .pooling import AdaptiveAvgPool2D # noqa: F401
from .pooling import AdaptiveAvgPool3D # noqa: F401
from .pooling import AdaptiveMaxPool1D # noqa: F401
from .pooling import AdaptiveMaxPool2D # noqa: F401
from .pooling import AdaptiveMaxPool3D # noqa: F401
from .pooling import MaxUnPool2D # noqa: F401
from .conv import Conv1D # noqa: F401
from .conv import Conv2D # noqa: F401
from .conv import Conv3D # noqa: F401
from .conv import Conv1DTranspose # noqa: F401
from .conv import Conv2DTranspose # noqa: F401
from .conv import Conv3DTranspose # noqa: F401
from .loss import BCEWithLogitsLoss # noqa: F401
from .loss import CrossEntropyLoss # noqa: F401
from .loss import MSELoss # noqa: F401
from .loss import L1Loss # noqa: F401
from .loss import NLLLoss # noqa: F401
from .loss import BCELoss # noqa: F401
from .loss import KLDivLoss # noqa: F401
from .loss import MarginRankingLoss # noqa: F401
from .loss import CTCLoss # noqa: F401
from .loss import SmoothL1Loss # noqa: F401
from .norm import BatchNorm1D # noqa: F401
from .norm import BatchNorm2D # noqa: F401
from .norm import BatchNorm3D # noqa: F401
from .norm import SyncBatchNorm # noqa: F401
from .norm import GroupNorm # noqa: F401
from .norm import LayerNorm # noqa: F401
from .norm import SpectralNorm # noqa: F401
from .norm import LocalResponseNorm # noqa: F401
from .vision import PixelShuffle # noqa: F401
from .distance import PairwiseDistance # noqa: F401
from .container import LayerDict # noqa: F401
__all__ = []