-
Notifications
You must be signed in to change notification settings - Fork 875
/
Copy pathop128.h
443 lines (403 loc) · 16.5 KB
/
op128.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*************************************************************************
* Copyright (c) 2016-2019, NVIDIA CORPORATION. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#ifndef OP128_H_
#define OP128_H_
#include <type_traits>
inline __device__ void load128(const uint64_t* ptr, uint64_t &v0, uint64_t &v1) {
asm volatile("ld.volatile.global.v2.u64 {%0,%1}, [%2];"
: "=l"(v0), "=l"(v1) : "l"(ptr) : "memory");
}
inline __device__ void store128(uint64_t* ptr, uint64_t v0, uint64_t v1) {
asm volatile("st.volatile.global.v2.u64 [%2], {%0,%1};"
:: "l"(v0), "l"(v1), "l"(ptr) : "memory");
}
inline __device__ uint64_t* shmemCvtPtr(volatile uint64_t* shmemGenericPtr) {
uint64_t* shmemAsmPtr;
asm volatile("cvta.to.shared.u64 %0, %1;" : "=l"(shmemAsmPtr) : "l"(shmemGenericPtr) : "memory");
return shmemAsmPtr;
}
inline __device__ void loadShmem128(uint64_t* shmemAsmPtr, uint64_t &v0, uint64_t &v1) {
asm volatile("ld.volatile.shared.v2.u64 {%0,%1}, [%2];"
: "=l"(v0), "=l"(v1) : "l"(shmemAsmPtr) : "memory");
}
inline __device__ void storeShmem128(uint64_t* shmemAsmPtr, uint64_t v0, uint64_t v1) {
asm volatile("st.volatile.shared.v2.u64 [%2], {%0,%1};"
:: "l"(v0), "l"(v1), "l"(shmemAsmPtr) : "memory");
}
template<typename T>
inline __device__ void loadShmemMisaligned128(T *ptr, uint64_t &v0, uint64_t &v1) {
union {
uint32_t tmp4[4];
uint64_t tmp8[2];
};
if(sizeof(T) < 4) {
uint32_t *ptr4 = reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(ptr) & -uintptr_t(4));
#pragma unroll
for(int e=0; e < 4; e++) {
// Produce 4 bytes of sub-register type by reading 2 4-byte
// aligned values and shifting.
uint32_t lo, hi;
asm volatile("ld.shared.b32 %0,[%1];" : "=r"(lo) : "l"(ptr4+e+0) : "memory");
asm volatile("ld.shared.b32 %0,[%1];" : "=r"(hi) : "l"(ptr4+e+1) : "memory");
tmp4[e] = __funnelshift_r(lo, hi, 8*(int(reinterpret_cast<uintptr_t>(ptr))%4));
}
}
else if(sizeof(T) == 4) {
#pragma unroll
for(int e=0; e < 4; e++)
asm volatile("ld.shared.b32 %0,[%1];" : "=r"(tmp4[e]) : "l"(ptr+e) : "memory");
}
else /*sizeof(T)==8*/ {
#pragma unroll
for(int e=0; e < 2; e++)
asm volatile("ld.shared.b64 %0,[%1];" : "=l"(tmp8[e]) : "l"(ptr+e) : "memory");
}
v0 = tmp8[0];
v1 = tmp8[1];
}
template<typename T>
__device__ __forceinline__ uint32_t cvta_to_shared(T* ptr) {
return (uint32_t)__cvta_generic_to_shared(ptr);
}
template<typename T>
__device__ __forceinline__ uintptr_t cvta_to_global(T* ptr) {
return (uintptr_t)__cvta_generic_to_global(ptr);
}
template<typename T>
__device__ __forceinline__ T* cvta_from_shared(uint32_t shptr) {
T* ans;
asm("cvta.shared.u64 %0, %1;" : "=l"(ans) : "l"(uint64_t(shptr)));
return ans;
}
template<typename T>
__device__ __forceinline__ T* cvta_from_global(uintptr_t gptr) {
T* ans;
asm("cvta.global.u64 %0, %1;" : "=l"(ans) : "l"(gptr));
return ans;
}
////////////////////////////////////////////////////////////////////////////////
// BytePack<Size>: struct of bytes.
template<int Size>
union BytePack;
template<>
union BytePack<0> {};
template<>
union BytePack<1> {
uint8_t u8, native;
};
template<>
union BytePack<2> {
BytePack<1> half[2];
uint8_t u8[2];
uint16_t u16, native;
};
template<>
union BytePack<4> {
BytePack<2> half[2];
uint8_t u8[4];
uint16_t u16[2];
uint32_t u32, native;
};
template<>
union BytePack<8> {
BytePack<4> half[2];
uint8_t u8[8];
uint16_t u16[4];
uint32_t u32[2];
uint64_t u64, native;
};
template<>
union alignas(16) BytePack<16> {
BytePack<8> half[2];
uint8_t u8[16];
uint16_t u16[8];
uint32_t u32[4];
uint64_t u64[2];
ulong2 ul2, native;
};
template<typename T>
struct BytePackOf {
static constexpr int Size = sizeof(T);
using Pack = BytePack<Size>;
};
template<>
struct BytePackOf<BytePack<0>> {
static constexpr int Size = 0;
using Pack = BytePack<0>;
};
template<typename T>
__device__ __forceinline__ typename BytePackOf<T>::Pack toPack(T value) {
union { typename BytePackOf<T>::Pack p; T v; };
// Coverity recommends the use of std::move here but, given that T is a POD
// scalar, a plain copy will be just as efficient.
// coverity[copy_assignment_call]
v = value;
return p;
}
template<typename T>
__device__ __forceinline__ T fromPack(typename BytePackOf<T>::Pack pack) {
union { typename BytePackOf<T>::Pack p; T v; };
p = pack;
return v;
}
////////////////////////////////////////////////////////////////////////////////
// Load/store of BytePack<?> using integral addresses.
template<int Size> __device__ BytePack<Size> ld_global(uintptr_t addr);
template<int Size> __device__ BytePack<Size> ld_shared(uint32_t addr);
template<int Size> __device__ BytePack<Size> ld_volatile_global(uintptr_t addr);
template<int Size> __device__ BytePack<Size> ld_volatile_shared(uint32_t addr);
template<int Size> __device__ BytePack<Size> ld_relaxed_gpu_global(uintptr_t addr);
template<int Size> __device__ void st_global(uintptr_t addr, BytePack<Size> value);
template<int Size> __device__ void st_shared(uint32_t addr, BytePack<Size> value);
template<int Size> __device__ void st_relaxed_gpu_global(uintptr_t addr, BytePack<Size> value);
template<> __device__ __forceinline__ BytePack<0> ld_global<0>(uintptr_t addr) { return {}; }
template<> __device__ __forceinline__ BytePack<0> ld_shared<0>(uint32_t addr) { return {}; }
template<> __device__ __forceinline__ BytePack<0> ld_volatile_global<0>(uintptr_t addr) { return {}; }
template<> __device__ __forceinline__ BytePack<0> ld_volatile_shared<0>(uint32_t addr) { return {}; }
template<> __device__ __forceinline__ BytePack<0> ld_relaxed_gpu_global<0>(uintptr_t addr) { return {}; }
template<> __device__ __forceinline__ void st_global<0>(uintptr_t addr, BytePack<0> value) {}
template<> __device__ __forceinline__ void st_shared<0>(uint32_t addr, BytePack<0> value) {}
template<> __device__ __forceinline__ void st_relaxed_gpu_global<0>(uintptr_t addr, BytePack<0> value) {}
// Used to define implementations for above prototypes.
#define DEFINE_ld_st__size_space(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty, space, addr_cxx_ty, addr_reg_ty) \
template<> \
__device__ __forceinline__ BytePack<bytes> ld_##space<bytes>(addr_cxx_ty addr) { \
data_cxx_ty tmp; \
asm volatile("ld." #space "." #data_ptx_ty " %0, [%1];" : "="#data_reg_ty(tmp) : #addr_reg_ty(addr) : "memory"); \
BytePack<bytes> ans; \
ans.native = tmp; \
return ans; \
} \
template<> \
__device__ __forceinline__ BytePack<bytes> ld_volatile_##space<bytes>(addr_cxx_ty addr) { \
data_cxx_ty tmp; \
asm volatile("ld.volatile." #space "." #data_ptx_ty " %0, [%1];" : "="#data_reg_ty(tmp) : #addr_reg_ty(addr) : "memory"); \
BytePack<bytes> ans; \
ans.native = tmp; \
return ans; \
} \
template<> \
__device__ __forceinline__ void st_##space<bytes>(addr_cxx_ty addr, BytePack<bytes> value) { \
data_cxx_ty tmp = value.native; \
asm volatile("st." #space "." #data_ptx_ty " [%0], %1;" :: #addr_reg_ty(addr), #data_reg_ty(tmp) : "memory"); \
}
#if __CUDA_ARCH__ >= 700
#define PTX_relaxed_gpu "relaxed.gpu"
#else
#define PTX_relaxed_gpu "volatile"
#endif
#define DEFINE_ld_st_gpu_relaxed__size(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty) \
template<> \
__device__ __forceinline__ BytePack<bytes> ld_relaxed_gpu_global<bytes>(uintptr_t addr) { \
data_cxx_ty tmp; \
asm volatile("ld." PTX_relaxed_gpu ".global." #data_ptx_ty " %0, [%1];" : "="#data_reg_ty(tmp) : "l"(addr) : "memory"); \
BytePack<bytes> ans; \
ans.native = tmp; \
return ans; \
} \
template<> \
__device__ __forceinline__ void st_relaxed_gpu_global<bytes>(uintptr_t addr, BytePack<bytes> value) { \
data_cxx_ty tmp = value.native; \
asm volatile("st." PTX_relaxed_gpu ".global." #data_ptx_ty " [%0], %1;" :: "l"(addr), #data_reg_ty(tmp) : "memory"); \
}
#define DEFINE_ld_st__size(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty) \
DEFINE_ld_st__size_space(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty, global, uintptr_t, l) \
DEFINE_ld_st__size_space(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty, shared, uint32_t, r) \
DEFINE_ld_st_gpu_relaxed__size(bytes, data_cxx_ty, data_ptx_ty, data_reg_ty)
// Single-byte types use 4-byte registers since there is no 1-byte register
// character for asm blocks. See https://docs.nvidia.com/cuda/inline-ptx-assembly/index.html#constraints
DEFINE_ld_st__size(1, uint32_t, b8, r)
DEFINE_ld_st__size(2, uint16_t, b16, h)
DEFINE_ld_st__size(4, uint32_t, b32, r)
DEFINE_ld_st__size(8, uint64_t, b64, l)
#undef DEFINE_ld_st__size_space
#undef DEFINE_ld_st__size
#define DEFINE_ld_st_16__space(space, addr_cxx_ty, addr_reg_ty) \
template<> \
__device__ __forceinline__ BytePack<16> ld_##space<16>(addr_cxx_ty addr) { \
BytePack<16> ans; \
asm volatile("ld." #space ".v2.b64 {%0,%1}, [%2];" : "=l"(ans.u64[0]), "=l"(ans.u64[1]) : #addr_reg_ty(addr) : "memory"); \
return ans; \
} \
template<> \
__device__ __forceinline__ BytePack<16> ld_volatile_##space<16>(addr_cxx_ty addr) { \
BytePack<16> ans; \
asm volatile("ld.volatile." #space ".v2.b64 {%0,%1}, [%2];" : "=l"(ans.u64[0]), "=l"(ans.u64[1]) : #addr_reg_ty(addr) : "memory"); \
return ans; \
} \
template<> \
__device__ __forceinline__ void st_##space<16>(addr_cxx_ty addr, BytePack<16> value) { \
asm volatile("st." #space ".v2.b64 [%0], {%1,%2};" :: #addr_reg_ty(addr), "l"(value.u64[0]), "l"(value.u64[1]) : "memory"); \
}
DEFINE_ld_st_16__space(global, uintptr_t, l)
DEFINE_ld_st_16__space(shared, uint32_t, r)
#undef DEFINE_ld_st_16
template<>
__device__ __forceinline__ BytePack<16> ld_relaxed_gpu_global<16>(uintptr_t addr) {
BytePack<16> ans;
asm volatile("ld." PTX_relaxed_gpu ".global.v2.b64 {%0,%1}, [%2];" : "=l"(ans.u64[0]), "=l"(ans.u64[1]) : "l"(addr) : "memory");
return ans;
}
template<>
__device__ __forceinline__ void st_relaxed_gpu_global<16>(uintptr_t addr, BytePack<16> value) {
asm volatile("st." PTX_relaxed_gpu ".global.v2.b64 [%0], {%1,%2};" :: "l"(addr), "l"(value.u64[0]), "l"(value.u64[1]) : "memory");
}
#undef PTX_relaxed_gpu
////////////////////////////////////////////////////////////////////////////////
// Atomic load/store using c++ pointers.
__device__ __forceinline__ uint64_t ld_volatile_global(uint64_t *ptr) {
uint64_t ans;
asm volatile("ld.volatile.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
return ans;
}
__device__ __forceinline__ uint64_t ld_relaxed_sys_global(uint64_t *ptr) {
uint64_t ans;
#if __CUDA_ARCH__ >= 700
asm volatile("ld.relaxed.sys.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#else
asm volatile("ld.volatile.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#endif
return ans;
}
__device__ __forceinline__ uint64_t ld_relaxed_gpu_global(uint64_t *ptr) {
uint64_t ans;
#if __CUDA_ARCH__ >= 700
asm volatile("ld.relaxed.gpu.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#else
asm volatile("ld.volatile.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#endif
return ans;
}
__device__ __forceinline__ uint64_t ld_acquire_sys_global(uint64_t *ptr) {
uint64_t ans;
#if __CUDA_ARCH__ >= 700
asm volatile("ld.acquire.sys.global.u64 %0, [%1];" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#else
asm volatile("ld.volatile.sys.global.u64 %0, [%1]; membar.gl;" : "=l"(ans) : "l"(cvta_to_global(ptr)) : "memory");
#endif
return ans;
}
__device__ __forceinline__ void st_volatile_global(uint64_t *ptr, uint64_t val) {
asm volatile("st.volatile.global.u64 [%0], %1;" :: "l"(cvta_to_global(ptr)), "l"(val) : "memory");
}
__device__ __forceinline__ void st_relaxed_sys_global(uint64_t *ptr, uint64_t val) {
#if __CUDA_ARCH__ >= 700
asm volatile("st.relaxed.sys.global.u64 [%0], %1;" :: "l"(cvta_to_global(ptr)), "l"(val) : "memory");
#else
asm volatile("st.volatile.global.u64 [%0], %1;" :: "l"(cvta_to_global(ptr)), "l"(val) : "memory");
#endif
}
__device__ __forceinline__ void st_release_sys_global(uint64_t *ptr, uint64_t val) {
#if __CUDA_ARCH__ >= 700
asm volatile("st.release.sys.global.u64 [%0], %1;" :: "l"(cvta_to_global(ptr)), "l"(val) : "memory");
#else
asm volatile("membar.sys; st.volatile.global.u64 [%0], %1;" :: "l"(cvta_to_global(ptr)), "l"(val) : "memory");
#endif
}
__device__ __forceinline__ void fence_acq_rel_sys() {
#if __CUDA_ARCH__ >= 700
asm volatile("fence.acq_rel.sys;" ::: "memory");
#else
asm volatile("membar.sys;" ::: "memory");
#endif
}
__device__ __forceinline__ void fence_acq_rel_gpu() {
#if __CUDA_ARCH__ >= 700
asm volatile("fence.acq_rel.gpu;" ::: "memory");
#else
asm volatile("membar.gl;" ::: "memory");
#endif
}
////////////////////////////////////////////////////////////////////////////////
// Multimem stores of BytePack<?>.
template<int Size>
__device__ __forceinline__ void multimem_st_global(uintptr_t addr, BytePack<Size> val);
#if __CUDA_ARCH__ >= 900 && CUDART_VERSION >= 12010
template<>
__device__ __forceinline__ void multimem_st_global<0>(uintptr_t addr, BytePack<0> val) {
// nop
}
template<>
__device__ __forceinline__ void multimem_st_global<1>(uintptr_t addr, BytePack<1> val) {
asm volatile("st.global.b8 [%0], %1;" :: "l"(addr), "r"((uint32_t)val.u8) : "memory");
}
template<>
__device__ __forceinline__ void multimem_st_global<2>(uintptr_t addr, BytePack<2> val) {
asm volatile("st.global.b16 [%0], %1;" :: "l"(addr), "h"(val.u16) : "memory");
}
template<>
__device__ __forceinline__ void multimem_st_global<4>(uintptr_t addr, BytePack<4> val) {
asm volatile("multimem.st.global.b32 [%0], %1;" :: "l"(addr), "r"(val.u32) : "memory");
}
template<>
__device__ __forceinline__ void multimem_st_global<8>(uintptr_t addr, BytePack<8> val) {
asm volatile("multimem.st.global.b64 [%0], %1;" :: "l"(addr), "l"(val.u64) : "memory");
}
template<>
__device__ __forceinline__ void multimem_st_global<16>(uintptr_t addr, BytePack<16> val) {
asm volatile("multimem.st.global.v4.f32 [%0], {%1,%2,%3,%4};"
:: "l"(addr), "r"(val.u32[0]), "r"(val.u32[1]), "r"(val.u32[2]), "r"(val.u32[3])
: "memory");
}
#else
template<int Size>
__device__ __forceinline__ void multimem_st_global(uintptr_t addr, BytePack<Size> val) {
// nop
}
#endif
// Warp-uniform memory copy from shared address (not generic) to global memory.
// The number of bytes copied is `min(MaxBytes, nBytesAhead)`, a negative value
// is interpeted as zero. EltSize is the guaranteed alignment of the addresses and sizes.
template<int EltSize, int MaxBytes, bool Multimem, typename IntBytes>
__device__ __forceinline__ void copyGlobalShared_WarpUnrolled(
int lane, uintptr_t dstAddr, uint32_t srcAddr, IntBytes nBytesAhead
) {
static_assert(std::is_signed<IntBytes>::value, "`IntBytes` must be a signed integral type.");
int nBytes = min(nBytesAhead, (IntBytes)MaxBytes);
int nFrontBytes = min(nBytes, (16 - int(dstAddr%16))%16);
int nMiddleBytes = (nBytes-nFrontBytes) & -16;
int nBackBytes = (nBytes-nFrontBytes) % 16;
{ int backLane = WARP_SIZE-1 - lane;
bool hasFront = lane*EltSize < nFrontBytes;
bool hasBack = backLane*EltSize < nBackBytes;
int offset = hasFront ? lane*EltSize : (nBytes - (backLane+1)*EltSize);
if (hasFront | hasBack) {
BytePack<EltSize> tmp = ld_shared<EltSize>(srcAddr+offset);
// Can't use multimem_st since it doesn't support EltSize==2
st_global<EltSize>(dstAddr+offset, tmp);
}
}
srcAddr += nFrontBytes;
int srcMisalign = EltSize < 4 ? (srcAddr%4) : 0;
srcAddr += -srcMisalign + lane*16;
dstAddr += nFrontBytes + lane*16;
nMiddleBytes -= lane*16;
#pragma unroll
for (int u=0; u < divUp(MaxBytes, WARP_SIZE*16); u++) {
if (nMiddleBytes <= 0) break;
union {
BytePack<4> b4[4];
BytePack<16> b16;
};
b4[0] = ld_shared<4>(srcAddr + 0*4);
b4[1] = ld_shared<4>(srcAddr + 1*4);
b4[2] = ld_shared<4>(srcAddr + 2*4);
b4[3] = ld_shared<4>(srcAddr + 3*4);
if (srcMisalign != 0) {
BytePack<4> b4_4 = ld_shared<4>(srcAddr + 4*4);
b4[0].u32 = __funnelshift_r(b4[0].u32, b4[1].u32, srcMisalign*8);
b4[1].u32 = __funnelshift_r(b4[1].u32, b4[2].u32, srcMisalign*8);
b4[2].u32 = __funnelshift_r(b4[2].u32, b4[3].u32, srcMisalign*8);
b4[3].u32 = __funnelshift_r(b4[3].u32, b4_4.u32, srcMisalign*8);
}
if (Multimem) multimem_st_global<16>(dstAddr, b16);
else st_global<16>(dstAddr, b16);
srcAddr += WARP_SIZE*16;
dstAddr += WARP_SIZE*16;
nMiddleBytes -= WARP_SIZE*16;
}
}
#endif