-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_zogy.py
429 lines (302 loc) · 17 KB
/
my_zogy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#--------------------------------------------------------------------------------------------------#
from astropy.io import fits
import sys
import glob
import os
from astroquery.gaia import Gaia
import subprocess
import numpy as np
import numpy.ma as ma
import warnings
from astropy.wcs import WCS
import astropy.units as u
from astropy.stats import sigma_clipped_stats, sigma_clip
from astropy.coordinates import SkyCoord
from astropy.io import ascii
#--------------------------------------------------------------------------------------------------#
cwd = os.getcwd()
sys.path.append(cwd)
import ldactools as aw
import py_zogy
warnings.simplefilter('ignore')
astrom_scamp = cwd + '/scamp.conf'
astrom_sex = cwd + '/astrom.sex'
astrom_swarp = cwd + '/config.swarp'
psf_config_name = cwd + '/photom.psfex'
sexpsfparam = cwd + '/sexpsf.param'
astrom_param = cwd + '/astrom.param'
#--------------------------------------------------------------------------------------------------#
fits_delete = False
#--------------------------------------------------------------------------------------------------#
def remove_file(file_name):
try:
os.remove(file_name)
except OSError:
pass
def remove_similar_files(ctext):
for file_name in glob.glob(ctext):
remove_file(file_name)
for text in ['*.cat', '*.resamp', '*.resamp.bkgrms*', '*.scaled', '*.unc', '*.weight', '*.head', '*.ldac', '*.txt', '*.ps', '*.zip', '*.psf', \
'*.psfmodel','*.weight.fits']:
remove_similar_files(ctext = text)
if fits_delete:
remove_similar_files(ctext = '*.fits')
#--------------------------------------------------------------------------------------------------#
class color:
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'
def display_text(text):
print('#'+'-'*(10+len(text))+'#')
print('#'+('-'*5)+ color.BOLD+ color.UNDERLINE+str(text)+ color.END+('-'*5)+'#')
print('#'+'-'*(10+len(text))+'#')
#--------------------------------------------------------------------------------------------------#
def get_ps1_template(ra, dec, imsize, filt):
display_text("Downloading Ps1 template")
'''
ps_list = glob.glob('*stack*skycell*fits')
[os.remove(p) for p in ps_list]
ini_file_list = glob.glob('stack*fits')
ps1_command = ['panstamps', '--width=%.3f'%imsize, '--filters=%s'%filt, "--downloadFolder=.", 'stack', '%.5f'%ra, '%.5f'%dec]
print(ps1_command)
try:
rval = subprocess.call(ps1_command)
except subprocess.CalledProcessError as err:
print('Error running panstamps. Exit')
sys.exit(1)
'''
new_file_list = glob.glob('stack*fits')
new_stacks = [x for x in new_file_list]
if len(new_stacks) == 0:
print('panstamps did not produce anything ..')
return None
ps1_filename = new_stacks[0]
print('panstamps created new file %s'%ps1_filename)
return ps1_filename
def make_gaia_catalog(ra, dec, catalog_box_size, catalog_min_mag, catalog_max_mag, catname, writetext = False, writeldac = False):
display_text('Generate Gaia Catalog')
job = Gaia.launch_job_async("SELECT * FROM gaiadr2.gaia_source AS g, gaiadr2.panstarrs1_best_neighbour AS pbest, gaiadr2.panstarrs1_original_valid AS ps1 WHERE g.source_id = pbest.source_id AND pbest.original_ext_source_id = ps1.obj_id AND CONTAINS(POINT('ICRS', g.ra, g.dec), CIRCLE('ICRS', %.4f, %.4f, %.4f))=1 AND ps1.r_mean_psf_mag > %.2f AND ps1.r_mean_psf_mag < %.2f AND pmra IS NOT NULL AND pmdec IS NOT NULL AND abs(pmdec) > 0 AND abs(pmdec) < 40 AND abs(pmra)>0 AND abs(pmra) < 40 AND ps1.n_detections > 6 AND pbest.number_of_mates=0 AND pbest.number_of_neighbours=1;"%(ra, dec, catalog_box_size/60, catalog_min_mag, catalog_max_mag), dump_to_file = False)
p = job.get_results()
p['ra_errdeg'] = p['ra_error'] / 3.6e6
p['dec_errdeg'] = p['dec_error'] / 3.6e6
p['FLAGS'] = 0
p.remove_columns(['astrometric_n_obs_al', 'astrometric_n_obs_ac', 'astrometric_n_good_obs_al', 'astrometric_n_bad_obs_al', 'astrometric_gof_al', 'astrometric_chi2_al', 'astrometric_excess_noise', 'astrometric_excess_noise_sig', 'astrometric_params_solved', 'astrometric_primary_flag', 'astrometric_weight_al', 'astrometric_pseudo_colour', 'astrometric_pseudo_colour_error', 'mean_varpi_factor_al', 'astrometric_matched_observations', 'visibility_periods_used', 'astrometric_sigma5d_max', 'frame_rotator_object_type', 'matched_observations', 'duplicated_source', 'phot_g_n_obs', 'phot_g_mean_flux', 'phot_g_mean_flux_error', 'phot_g_mean_flux_over_error', 'phot_g_mean_mag', 'phot_bp_n_obs', 'phot_bp_mean_flux', 'phot_bp_mean_flux_error', 'phot_bp_mean_flux_over_error', 'phot_bp_mean_mag', 'phot_rp_n_obs', 'phot_rp_mean_flux', 'phot_rp_mean_flux_error', 'phot_rp_mean_flux_over_error', 'phot_rp_mean_mag', 'phot_bp_rp_excess_factor', 'phot_proc_mode', 'bp_rp', 'bp_g', 'g_rp', 'radial_velocity', 'radial_velocity_error', 'rv_nb_transits', 'rv_template_teff', 'rv_template_logg', 'rv_template_fe_h', 'l', 'b', 'ecl_lon', 'ecl_lat', 'priam_flags', 'teff_val', 'teff_percentile_lower', 'teff_percentile_upper', 'a_g_val', 'a_g_percentile_lower', 'a_g_percentile_upper', 'e_bp_min_rp_val', 'e_bp_min_rp_percentile_lower', 'e_bp_min_rp_percentile_upper', 'flame_flags', 'radius_val', 'radius_percentile_lower', 'radius_percentile_upper', 'lum_val', 'lum_percentile_lower', 'lum_percentile_upper', 'gaia_astrometric_params', 'obj_name', 'obj_id', 'ra_2', 'dec_2', 'ra_error_2', 'dec_error_2', 'epoch_mean', 'zone_id', 'obj_info_flag', 'quality_flag', 'designation', 'phot_variable_flag', 'datalink_url', 'epoch_photometry_url', 'original_ext_source_id'])
if writetext:
ascii.write(p, 'catalog.txt')
if writeldac:
if os.path.exists(catname + '.ldac'):
os.remove(catname + '.ldac')
aw.save_table_as_ldac(p, catname + '.ldac')
return 1
def run_sextractor(sciname, refname):
display_text('Running Sextractor')
sex_command = ['sex', '-c', astrom_sex, sciname, '-CATALOG_NAME', sciname +'.cat', '-WEIGHT_TYPE', 'NONE', '-CHECKIMAGE_TYPE', 'NONE']
try:
rval = subprocess.call(sex_command)
except subprocess.CalledProcessError as err:
print('Could not run sextractor on %s. Exit'%sciname)
sys.exit(1)
sex_command = ['sex', '-c', astrom_sex, refname, '-CATALOG_NAME', refname +'.cat', '-WEIGHT_TYPE', 'NONE', '-CHECKIMAGE_TYPE', 'NONE']
try:
rval = subprocess.call(sex_command)
except subprocess.CalledProcessError as err:
print('Could not run sextractor on %s. Exit'%refname)
sys.exit(1)
def run_scamp(filelistname, ra ,dec, imagesize, sciname, refname):
display_text('Running Scamp')
catname = filelistname + '.cat'
make_gaia_catalog(ra, dec, imagesize, 10, 22, catname, writetext = True, writeldac = True)
scamp_command = ['scamp', '-c', astrom_scamp, '@%s'%filelistname, '-ASTREFCAT_NAME', catname + '.ldac']
try:
rval = subprocess.call(scamp_command)
except subprocess.CalledProcessError as err:
print('Could not run scamp on %s. Exit'%refname)
sys.exit(1)
os.rename(sciname+'.head', sciname[:-5]+'.head')
os.rename(refname+'.head', refname[:-5]+'.head')
def run_swarp(scifilename, reffilename, pxscale, imgpixsize, ra, dec):
display_text('Running Swarp')
run_sextractor(scifilename, reffilename)
filelistname = '%s_list.txt'%scifilename
f = open(filelistname, 'w')
f.write('%s.cat\n%s.cat'%(scifilename, reffilename))
f.close()
run_scamp(filelistname, ra, dec, imgpixsize*pxscale/60, scifilename, reffilename)
#Create weight files for science and referece images
scihdu = fits.open(scifilename, 'update')
scidata = scihdu[0].data
refhdu = fits.open(reffilename, 'update')
refdata = refhdu[0].data
refhdu.close()
#Create a weight map to throw out the NANs
sci_weight_data = np.ones(scidata.shape)
sci_weight_data[np.isnan(scidata)] = 0
ref_weight_data = np.ones(refdata.shape)
ref_weight_data[np.isnan(refdata)] = 0
sci_weight_hdu = fits.PrimaryHDU(sci_weight_data)
sci_weight_hdu.writeto(scifilename + '.weight', overwrite = True)
ref_weight_hdu = fits.PrimaryHDU(ref_weight_data)
ref_weight_hdu.writeto(reffilename + '.weight', overwrite = True)
#swarp_command = "swarp %s -c %s -RESAMPLE Y -RESAMPLE_DIR . -SUBTRACT_BACK Y -WEIGHT_TYPE MAP_WEIGHT -WEIGHT_IMAGE %s -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE %.3f -IMAGE_SIZE %d -CENTER %.8f,%.8f -COMBINE Y -IMAGEOUT_NAME %s -WEIGHTOUT_NAME %s"%(scifilename, astrom_swarp, scifilename + '.weight', pxscale, imgpixsize, ra , dec, scifilename + '.resamp', scifilename + '.resamp.weight')
swarp_command = "swarp %s -c %s -RESAMPLE Y -RESAMPLE_DIR . -SUBTRACT_BACK Y -WEIGHT_TYPE MAP_WEIGHT -WEIGHT_IMAGE %s -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE %.3f -IMAGE_SIZE %d -CENTER %.8f,%.8f -COMBINE N -WEIGHTOUT_NAME %s"%(scifilename, astrom_swarp, scifilename + '.weight', pxscale, imgpixsize, ra, dec, scifilename+'.resamp.weight')
print(swarp_command)
os.system(swarp_command)
#swarp_command = "swarp %s -c %s -RESAMPLE Y -RESAMPLE_DIR . -SUBTRACT_BACK N -WEIGHT_TYPE MAP_WEIGHT -WEIGHT_IMAGE %s -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE %.3f -IMAGE_SIZE %d -CENTER %.8f,%.8f -COMBINE Y -IMAGEOUT_NAME %s -WEIGHTOUT_NAME %s"%(reffilename, astrom_swarp, reffilename + '.weight', pxscale, imgpixsize, ra , dec, reffilename + '.resamp', reffilename + '.resamp.weight')
swarp_command = "swarp %s -c %s -RESAMPLE Y -RESAMPLE_DIR . -SUBTRACT_BACK N -WEIGHT_TYPE MAP_WEIGHT -WEIGHT_IMAGE %s -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE %.3f -IMAGE_SIZE %d -CENTER %.8f,%.8f -COMBINE N -WEIGHTOUT_NAME %s"%(reffilename, astrom_swarp, reffilename + '.weight', pxscale, imgpixsize, ra , dec, reffilename+'.resamp.weight')
print(swarp_command)
os.system(swarp_command)
sciresampname = scifilename[:-5] + '.resamp.fits'
refresampname = reffilename[:-5] + '.resamp.fits'
scipsf = get_psf(sciresampname)
#scipsf = 'wcs_20190116_034-g.fits.psfmodel'
refpsf = get_psf(refresampname)
scihdu.close()
return sciresampname, refresampname, scipsf, refpsf
def get_psf(filename):
display_text('Running Sextractor')
sex_command = ['sex', '-c', astrom_sex, filename, '-CATALOG_NAME', filename+'.cat', '-WEIGHT_TYPE', 'NONE', '-CHECKIMAGE_TYPE', 'BACKGROUND_RMS', '-CHECKIMAGE_NAME', filename+'.bkgrms']
try:
rval = subprocess.call(sex_command)
except subprocess.CalledProcessError as err:
print('Could not run sextractor on %s. Exit'%filename)
sys.exit(1)
display_text('Ruuning PSFEX')
psfex_command = ['psfex', '-c', psf_config_name, filename+'.cat']
psfname = filename + '.psf'
try:
rval = subprocess.call(psfex_command)
except subprocess.CalledProcessError as err:
print('Could not run psfex on %s. Exit'%filename)
sys.exit(1)
psf_model_data = fits.open(psfname)[1].data[0][0][0]
psf_model_data = psf_model_data / np.sum(psf_model_data)
psf_model_hdu = fits.PrimaryHDU(psf_model_data)
psf_model_hdu.writeto(filename + '.psfmodel', overwrite = True)
return psfname+'model'
def run_zogy(sciname, refname, scipsf, refpsf):
display_text('Ruuning ZOGY')
#Cross match science and reference image catalogs to get flux scaling factor and astometric uncertainties
sci_catalog = aw.get_table_from_ldac(sciname + '.cat')
print sci_catalog
ref_catalog = aw.get_table_from_ldac(refname + '.cat')
print ref_catalog
good_sci_sources = (sci_catalog['FLAGS'] == 0) & (sci_catalog['SNR_WIN'] > 20) & (sci_catalog['FWHM_WORLD'] < 4./3600) & (sci_catalog['FWHM_WORLD'] > 0.5/3600) # & (sci_catalog['SNR_WIN'] < 100)
good_ref_sources = (ref_catalog['FLAGS'] == 0) & (ref_catalog['SNR_WIN'] > 20) & (ref_catalog['FWHM_WORLD'] < 4./3600) & (ref_catalog['FWHM_WORLD'] > 0.5/3600) # & (ref_catalog['SNR_WIN'] < 100)
print('Number of good sources SCI: %d REF: %d'%(np.sum(good_sci_sources), np.sum(good_ref_sources)))
ref_catalog = ref_catalog[good_ref_sources]
sci_catalog = sci_catalog[good_sci_sources]
#sci_coords = SkyCoord(ra = sci_catalog['ALPHAWIN_J2000'], dec = sci_catalog['DELTAWIN_J2000'], frame = 'icrs')
sci_coords = SkyCoord(ra = sci_catalog['X_WORLD'], dec = sci_catalog['Y_WORLD'], unit = 'degree')
ref_coords = SkyCoord(ra = ref_catalog['X_WORLD'], dec = ref_catalog['Y_WORLD'], unit = 'degree')
#Cross match the catalogs
idx_ref, idx_sci, d2d, d3d = sci_coords.search_around_sky(ref_coords, 1.0*u.arcsec)
xpos_sci = sci_catalog['XWIN_IMAGE']
ypos_sci = sci_catalog['YWIN_IMAGE']
xpos_ref = ref_catalog['XWIN_IMAGE']
ypos_ref = ref_catalog['YWIN_IMAGE']
sci_flux_auto = sci_catalog['FLUX_AUTO']
ref_flux_auto = ref_catalog['FLUX_AUTO']
print('Number of cross-matched sources is %d'%(len(d2d)))
ast_unc_x = np.std(xpos_sci[idx_sci] - xpos_ref[idx_ref])
ast_unc_y = np.std(ypos_sci[idx_sci] - ypos_ref[idx_ref])
print('Astrometric uncertainties are X: %.2f Y:%.2f'%(ast_unc_x, ast_unc_y))
flux_scale_mean, flux_scale_median, flux_scale_std = sigma_clipped_stats(sci_flux_auto[idx_sci] / ref_flux_auto[idx_ref])
flux_scale = flux_scale_median
print('Flux scaling for reference is %.5f +/- %.5f'%(flux_scale, flux_scale_std))
scihdu = fits.open(sciname)
sci_header = scihdu[0].header
sci_data = scihdu[0].data
sci_gain = 1.6
scihdu.close()
sciweighthdu = fits.open(sciname[:-5]+'.weight.fits')
sci_weight_data = sciweighthdu[0].data
sciweighthdu.close()
refhdu = fits.open(refname)
ref_header =refhdu[0].header
ref_data = refhdu[0].data
ref_gain = 1.04
refhdu.close()
refweighthdu = fits.open(refname[:-5]+'.weight.fits')
ref_weight_data = refweighthdu[0].data
refweighthdu.close()
image_mask = (sci_weight_data == 0) | (ref_weight_data == 0)
sci_data[image_mask] = 0
ref_data[image_mask] = 0
ref_data = ref_data * flux_scale
sci_rms = 0.5*(np.percentile(sci_data[sci_data!=0], 84.13) - np.percentile(sci_data[sci_data!=0], 15.86))
ref_rms = 0.5*(np.percentile(ref_data[ref_data!=0], 84.13) - np.percentile(ref_data[ref_data!=0], 15.86))
print('Science RMS is %.2f. Reference RMS is %.2f'%(sci_rms, ref_rms))
sci_poisson_noise = np.copy(sci_data) / sci_gain
sci_poisson_noise[sci_poisson_noise < 0] = 0
sci_rms_image = np.sqrt(sci_poisson_noise + sci_rms**2)
ref_poisson_noise = np.copy(ref_data) / ref_gain
ref_poisson_noise[ref_poisson_noise < 0] = 0
ref_rms_image = np.sqrt(ref_poisson_noise + ref_rms**2)
scirmshdu = fits.PrimaryHDU(sci_rms_image)
scirmshdu.writeto(sciname + '.unc', overwrite=True)
sci_rms_input = sciname + '.unc'
refrmshdu = fits.PrimaryHDU(ref_rms_image)
refrmshdu.writeto(refname + '.unc', overwrite=True)
ref_rms_input = refname + '.unc'
sciscaledhdu = fits.PrimaryHDU(sci_data)
sciscaledhdu.writeto(sciname + '.scaled', overwrite = True)
sci_diff_input = sciname + '.scaled'
refscaledhdu = fits.PrimaryHDU(ref_data)
refscaledhdu.writeto(refname + '.scaled', overwrite = True)
ref_diff_input = refname + '.scaled'
D, P_D, S_corr = py_zogy.py_zogy(sci_diff_input, ref_diff_input, scipsf, refpsf, sci_rms_input, ref_rms_input, sci_rms, ref_rms, dx=ast_unc_x, dy=ast_unc_y)
diff_hdu = fits.PrimaryHDU(D)
diff_hdu.header = sci_header
diff_hdu.writeto(sciname + '.diff', overwrite = True)
diff_psf_hdu = fits.PrimaryHDU(P_D)
diff_psf_hdu.writeto(sciname + '.diff.psf', overwrite = True)
scorr_hdu = fits.PrimaryHDU(S_corr)
scorr_hdu.header = sci_header
scorr_mean, scorr_median, scorr_std = sigma_clipped_stats(S_corr)
print('Scorr Mean, Median, STD is %.3f, %.3f, %.3f'%(scorr_mean, scorr_median, scorr_std))
scorr_hdu.writeto(sciname + '.scorr', overwrite = True)
def main(scifilename):
imagehdu = fits.open(scifilename, 'update')
imageHead = imagehdu[0].header
w = WCS(imageHead)
cd11 = imageHead['CD1_1']
cd21 = imageHead['CD2_1']
cd12 = imageHead['CD1_2']
cd22 = imageHead['CD2_2']
nxpix = imageHead['NAXIS1']
nypix = imageHead['NAXIS2']
image_x_cent = nxpix/2
image_y_cent = nypix/2
[raCent, decCent] = w.all_pix2world(image_x_cent, image_y_cent, 1)
xscale = np.sqrt(cd11**2 + cd21**2)
yscale = np.sqrt(cd12**2 + cd22**2)
try:
filterName = imageHead['FILTER']
filterName = filterName.strip("'")[0]
except KeyError:
print('FILTER keyword not found!')
filterName = None
boxwidth = max(xscale * nxpix, yscale * nypix)*60*1.2
print('Science image centered at RA %.3f DEC %.3f with SIZE of %.2f arcmin in FILTER %s'%(raCent, decCent, boxwidth, filterName))
#reffilename = get_ps1_template(raCent, decCent, boxwidth, filterName)
#reffilename = 'cutout_157.4405_29.4368.fits'
reffilename = 'pan_' + scifilename
print reffilename
sciresampname, refresampname, scipsf, refpsf = run_swarp(scifilename, reffilename, xscale * 3600, max(nxpix, nypix), raCent, decCent)
print sciresampname, refresampname
run_zogy(sciresampname, refresampname, scipsf, refpsf)
imagehdu.close()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description = 'Code to subtract input image from a PS1 template')
parser.add_argument('imagename', help = 'FITS file to perform subtraction on')
args = parser.parse_args()
image = args.imagename
main(image)