-
Notifications
You must be signed in to change notification settings - Fork 530
/
Copy pathresnet.py
executable file
·379 lines (309 loc) · 15.9 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Pre-trained ImageNet models: 'deci-model-repository/resnet?/ckpt_best.pth' => ? = the type of resnet (e.g. 18, 34...)
Pre-trained CIFAR10 models: 'deci-model-repository/CIFAR_NAS_#?_????_?/ckpt_best.pth' => ? = num of model, structure, width_mult
Code adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""
from typing import Optional, Callable, Dict
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
from super_gradients.training.models import BaseClassifier
from super_gradients.common.object_names import Models
from super_gradients.common.registry.registry import register_model
from super_gradients.modules.utils import width_multiplier
from super_gradients.training.utils import get_param
from super_gradients.training.utils.regularization_utils import DropPath
class BasicResNetBlock(nn.Module):
def __init__(self, in_planes, planes, stride=1, expansion=1, final_relu=True, droppath_prob=0.0):
super(BasicResNetBlock, self).__init__()
self.expansion = expansion
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.final_relu = final_relu
self.drop_path = DropPath(drop_prob=droppath_prob)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out = self.drop_path(out)
out += self.shortcut(x)
if self.final_relu:
out = F.relu(out)
return out
class Bottleneck(nn.Module):
def __init__(self, in_planes, planes, stride=1, expansion=4, final_relu=True, droppath_prob=0.0):
super(Bottleneck, self).__init__()
self.expansion = expansion
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.final_relu = final_relu
self.drop_path = DropPath(drop_prob=droppath_prob)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out = self.drop_path(out)
out += self.shortcut(x)
if self.final_relu:
out = F.relu(out)
return out
class CifarResNet(BaseClassifier):
def __init__(self, block, num_blocks, num_classes=10, width_mult=1, expansion=1, in_channels: int = 3):
super(CifarResNet, self).__init__()
self.expansion = expansion
self.structure = [num_blocks, width_mult]
self.in_planes = width_multiplier(64, width_mult)
self.conv1 = nn.Conv2d(in_channels, width_multiplier(64, width_mult), kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width_multiplier(64, width_mult))
self.layer1 = self._make_layer(block, width_multiplier(64, width_mult), num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, width_multiplier(128, width_mult), num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, width_multiplier(256, width_mult), num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, width_multiplier(512, width_mult), num_blocks[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.linear = nn.Linear(width_multiplier(512, width_mult) * self.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
if num_blocks == 0:
# When the number of blocks is zero but spatial dimension and/or number of filters about to change we put 1
# 3X3 conv layer to make this change to the new dimensions.
if stride != 1 or self.in_planes != planes:
layers.append(nn.Sequential(nn.Conv2d(self.in_planes, planes, kernel_size=3, stride=stride, bias=False, padding=1), nn.BatchNorm2d(planes)))
self.in_planes = planes
else:
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * self.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def replace_input_channels(self, in_channels: int, compute_new_weights_fn: Optional[Callable[[nn.Module, int], nn.Module]] = None):
from super_gradients.modules.weight_replacement_utils import replace_conv2d_input_channels
self.conv1 = replace_conv2d_input_channels(conv=self.conv1, in_channels=in_channels, fn=compute_new_weights_fn)
def get_input_channels(self) -> int:
return self.conv1.in_channels
class ResNet(BaseClassifier):
def __init__(
self,
block,
num_blocks: list,
num_classes: int = 10,
width_mult: float = 1,
expansion: int = 1,
droppath_prob=0.0,
input_batchnorm: bool = False,
backbone_mode: bool = False,
in_channels: int = 3,
):
super(ResNet, self).__init__()
self.expansion = expansion
self.backbone_mode = backbone_mode
self.structure = [num_blocks, width_mult]
self.in_planes = width_multiplier(64, width_mult)
self.input_batchnorm = input_batchnorm
if self.input_batchnorm:
self.bn0 = nn.BatchNorm2d(num_features=in_channels)
self.conv1 = nn.Conv2d(in_channels, width_multiplier(64, width_mult), kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(width_multiplier(64, width_mult))
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, width_multiplier(64, width_mult), num_blocks[0], stride=1, droppath_prob=droppath_prob)
self.layer2 = self._make_layer(block, width_multiplier(128, width_mult), num_blocks[1], stride=2, droppath_prob=droppath_prob)
self.layer3 = self._make_layer(block, width_multiplier(256, width_mult), num_blocks[2], stride=2, droppath_prob=droppath_prob)
self.layer4 = self._make_layer(block, width_multiplier(512, width_mult), num_blocks[3], stride=2, droppath_prob=droppath_prob)
if not self.backbone_mode:
# IF RESNET IS IN BACK_BONE MODE WE DON'T NEED THE FINAL CLASSIFIER LAYERS, BUT ONLY THE NET BLOCK STRUCTURE
self.linear = nn.Linear(width_multiplier(512, width_mult) * self.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.width_mult = width_mult
def _make_layer(self, block, planes, num_blocks, stride, droppath_prob):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
if num_blocks == 0:
# When the number of blocks is zero but spatial dimension and/or number of filters about to change we put 1
# 3X3 conv layer to make this change to the new dimensions.
if stride != 1 or self.in_planes != planes:
layers.append(nn.Sequential(nn.Conv2d(self.in_planes, planes, kernel_size=3, stride=stride, bias=False, padding=1), nn.BatchNorm2d(planes)))
self.in_planes = planes
else:
for stride in strides:
layers.append(block(self.in_planes, planes, stride, droppath_prob=droppath_prob))
self.in_planes = planes * self.expansion
return nn.Sequential(*layers)
def forward(self, x):
if self.input_batchnorm:
x = self.bn0(x)
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
if not self.backbone_mode:
# IF RESNET IS *NOT* IN BACK_BONE MODE WE NEED THE FINAL CLASSIFIER LAYERS OUTPUTS
out = self.avgpool(out)
out = out.squeeze(dim=2).squeeze(dim=2)
out = self.linear(out)
return out
def load_state_dict(self, state_dict, strict=True):
"""
load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone
:param state_dict: The state_dict to load
:param strict: strict loading (see super() docs)
"""
pretrained_model_weights_dict = state_dict.copy()
if self.backbone_mode:
# FIRST LET'S POP THE LAST TWO LAYERS - NO NEED TO LOAD THEIR VALUES SINCE THEY ARE IRRELEVANT AS A BACKBONE
pretrained_model_weights_dict.popitem()
pretrained_model_weights_dict.popitem()
pretrained_backbone_weights_dict = OrderedDict()
for layer_name, weights in pretrained_model_weights_dict.items():
# GET THE LAYER NAME WITHOUT THE 'module.' PREFIX
name_without_module_prefix = layer_name.split("module.")[1]
# MAKE SURE THESE ARE NOT THE FINAL LAYERS
pretrained_backbone_weights_dict[name_without_module_prefix] = weights
# RETURNING THE UNMODIFIED/MODIFIED STATE DICT DEPENDING ON THE backbone_mode VALUE
super().load_state_dict(pretrained_backbone_weights_dict, strict)
else:
super().load_state_dict(pretrained_model_weights_dict, strict)
def replace_head(self, new_num_classes=None, new_head=None):
if new_num_classes is None and new_head is None:
raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
if new_head is not None:
self.linear = new_head
else:
self.linear = nn.Linear(width_multiplier(512, self.width_mult) * self.expansion, new_num_classes)
def get_finetune_lr_dict(self, lr: float) -> Dict[str, float]:
return {"linear": lr, "default": 0}
def replace_input_channels(self, in_channels: int, compute_new_weights_fn: Optional[Callable[[nn.Module, int], nn.Module]] = None):
from super_gradients.modules.weight_replacement_utils import replace_conv2d_input_channels
if self.input_batchnorm:
self.bn0 = nn.BatchNorm2d(num_features=self.in_channels)
self.conv1 = replace_conv2d_input_channels(conv=self.conv1, in_channels=in_channels, fn=compute_new_weights_fn)
def get_input_channels(self) -> int:
return self.conv1.in_channels
@register_model(Models.RESNET18)
class ResNet18(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
BasicResNetBlock,
[2, 2, 2, 2],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
)
@register_model(Models.RESNET18_CIFAR)
class ResNet18Cifar(CifarResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(BasicResNetBlock, [2, 2, 2, 2], num_classes=num_classes or arch_params.num_classes)
@register_model(Models.RESNET34)
class ResNet34(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
BasicResNetBlock,
[3, 4, 6, 3],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
)
@register_model(Models.RESNET50)
class ResNet50(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
Bottleneck,
[3, 4, 6, 3],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
expansion=4,
)
@register_model(Models.RESNET50_3343)
class ResNet50_3343(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
Bottleneck,
[3, 3, 4, 3],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
expansion=4,
)
@register_model(Models.RESNET101)
class ResNet101(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
Bottleneck,
[3, 4, 23, 3],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
expansion=4,
)
@register_model(Models.RESNET152)
class ResNet152(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
Bottleneck,
[3, 8, 36, 3],
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
expansion=4,
)
@register_model(Models.CUSTOM_RESNET_CIFAR)
class CustomizedResnetCifar(CifarResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(BasicResNetBlock, arch_params.structure, width_mult=arch_params.width_mult, num_classes=num_classes or arch_params.num_classes)
@register_model(Models.CUSTOM_RESNET50_CIFAR)
class CustomizedResnet50Cifar(CifarResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(Bottleneck, arch_params.structure, width_mult=arch_params.width_mult, num_classes=num_classes or arch_params.num_classes, expansion=4)
@register_model(Models.CUSTOM_RESNET)
class CustomizedResnet(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
BasicResNetBlock,
arch_params.structure,
width_mult=arch_params.width_mult,
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
)
@register_model(Models.CUSTOM_RESNET50)
class CustomizedResnet50(ResNet):
def __init__(self, arch_params, num_classes=None):
super().__init__(
Bottleneck,
arch_params.structure,
width_mult=arch_params.width_mult,
num_classes=num_classes or arch_params.num_classes,
droppath_prob=get_param(arch_params, "droppath_prob", 0),
backbone_mode=get_param(arch_params, "backbone_mode", False),
expansion=4,
)