-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoad_Database.py
221 lines (138 loc) · 7.48 KB
/
Load_Database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#__________________________________________________________________________________________________
# This code load the entire database and the sub unit tokenizers
#___________________________________________________________________________________________________
# Libraries --------------------------------------------
import tensorflow as tf
import os
import numpy as np
import io
from tokenizers import Tokenizer
from tokenizers.models import WordPiece
from tokenizers.pre_tokenizers import WhitespaceSplit
from tokenizers.trainers import WordPieceTrainer
from tokenizers.processors import TemplateProcessing
# Import---------------------------
names_train=np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\names_train.npy')
names_dev = np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\names_dev.npy')
names_eval = np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\names_eval.npy')
labels_train = np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\labels_train.npy')
labels_dev = np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\labels_dev.npy')
labels_eval = np.load(r'C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\Names_Labels\labels_eval.npy')
#Functions ---------------------------------------------
# This load the data
def create_dataset(parent_dir):
lines_files_train=[]
lines_files_dev=[]
lines_files_ev=[]
ph=["training","devel","eval"]
labels_names_train=[]
labels_names_dev=[]
labels_names_eval=[]
names_tokenizer=[]
for i in range(len(ph)):
phase_folder=os.path.join(parent_dir,ph[i]) #Etapas
if ph[i] == "training":
for lan in os.listdir(phase_folder):
lan_folder=os.path.join(phase_folder,lan) #Lenguajes
for cor in os.listdir(lan_folder):
cor_path=os.path.join(lan_folder,cor) #Clean/Noisy
for name in os.listdir(cor_path):
names_path=os.path.join(cor_path,name) #Names
names_tokenizer.append(names_path)
lines=io.open(names_path,encoding='UTF-8').read().strip().split('\n')
index=names_train.tolist().index(name.split('.')[0])
pairs_train=[lines[0],labels_train[index]]
labels_names_train.append(str(name.split('.')[0])) #Cuando quiero ver los nombres y labels
lines_files_train.append(pairs_train)
print('Cantidad de Archivos de Train:{}'.format(len(lines_files_train)))
elif ph[i] == "devel":
for name in os.listdir(phase_folder):
names_path=os.path.join(phase_folder,name) #Names
names_tokenizer.append(names_path)
lines=io.open(names_path,encoding='UTF-8').read().strip().split('\n')
index=names_dev.tolist().index(name.split('.')[0])
pairs_dev=[lines[0],labels_dev[index]]
labels_names_dev.append(str(name.split('.')[0])) #Cuando quiero ver los nombres y labels
lines_files_dev.append(pairs_dev) #Guarda el contenido
print('Cantidad de Archivos de Dev:{}'.format(len(lines_files_dev)))
elif ph[i] == "eval":
for name in os.listdir(phase_folder):
names_path=os.path.join(phase_folder,name) #Names
names_tokenizer.append(names_path)
lines=io.open(names_path,encoding='UTF-8').read().strip().split('\n')
index=names_eval.tolist().index(name.split('.')[0])
pairs_ev=[lines[0],labels_eval[index]]
labels_names_eval.append(str(name.split('.')[0])) #Cuando quiero ver los nombres y labels
lines_files_ev.append(pairs_ev)
print('Cantidad de Archivos de Eval:{}'.format(len(lines_files_ev)))
return zip(*lines_files_train),zip(*lines_files_dev),zip(*lines_files_ev),labels_names_train, labels_names_dev, labels_names_eval,names_tokenizer
# Function for tokenization ---------------------------------------------------------
def tokenize(lang,names_tokenizer):
#bert_tokenizer = Tokenizer(WordPiece())
#bert_tokenizer.pre_tokenizer = WhitespaceSplit()
#bert_tokenizer.post_processor = TemplateProcessing(
# single="[CLS] $A [EOS]",
# special_tokens=[("[CLS]", 1),("[EOS]", 2),("[UNK]", 3)],)
#trainer = WordPieceTrainer(vocab_size=20000, special_tokens=["[UNK]","[PAD]"])
#bert_tokenizer.train(trainer, names_tokenizer)
#bert_tokenizer.enable_padding(pad_id=0, pad_token="[PAD]")
#files = bert_tokenizer.model.save(r"C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\V3_Window_Attention\Version_1.5_WP_Tokenizer", "vocab")
#bert_tokenizer.model = WordPiece.from_file(*files, unk_token="[UNK]")
#bert_tokenizer.save(r"C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\V3_Window_Attention\Version_1.5_WP_Tokenizer/tokenizer-vocab.json")
bert_tokenizer = Tokenizer.from_file(r"C:\Users\ASUS\Desktop\David\Proyectos\Reconocimiento de Idioma con Transformers\Sistema Fonotactico\V3_Window_Attention\Version_1.5_WP_Tokenizer/tokenizer-vocab.json")
output = bert_tokenizer.encode_batch(lang)
tensor=np.zeros((1,1024),dtype=int)
for i in range(len(list(lang))):
tensor=np.append(tensor,[output[i].ids[:1024]],axis=0)
tensor=tf.convert_to_tensor(tensor[1:,:])
print(tensor)
print(tensor.shape)
#print(output[5].tokens)
#print(output[0].ids)
#print(len(output[5].tokens))
#print(len(output[5].ids))
#print(bert_tokenizer.get_vocab())
#print(len(bert_tokenizer.get_vocab()))
return tensor,bert_tokenizer
# Main function -----------------------------------------------------------------------------
def load_dataset(path):
print()
print()
print("Loading ......")
#Procesa las listas y carga los contenidos de cada archivo
(sent_train,labels_train),(sent_dev,labels_dev),(sent_ev,labels_ev),labels_names_train, labels_names_dev, labels_names_eval,names_tokenizer=create_dataset(path)
print()
print()
print("Tokenizing.....")
# Se realiza la tokenizacion de cada unidad
input_tensor_train,lang_tokenizer=tokenize(sent_train,names_tokenizer)
output = lang_tokenizer.encode_batch(sent_dev)
input_tensor_dev=np.zeros((1,1024),dtype=int)
for i in range(len(list(sent_dev))):
input_tensor_dev=np.append(input_tensor_dev,[output[i].ids[:1024]],axis=0)
input_tensor_dev=tf.convert_to_tensor(input_tensor_dev[1:,:])
print(input_tensor_dev)
print(input_tensor_dev.shape)
output = lang_tokenizer.encode_batch(sent_ev)
input_tensor_ev=np.zeros((1,1024),dtype=int)
for i in range(len(list(sent_ev))):
input_tensor_ev=np.append(input_tensor_ev,[output[i].ids[:1024]],axis=0)
input_tensor_ev=tf.convert_to_tensor(input_tensor_ev[1:,:])
print(input_tensor_ev)
print(input_tensor_ev.shape)
print('')
print('IPA VOCABULARY')
print('')
print(lang_tokenizer.get_vocab())
print(len(lang_tokenizer.get_vocab()))
print('')
labels_t=[]
labels_d=[]
labels_e=[]
for i in range(len(labels_train)):
labels_t.append(int(labels_train[i]))
for i in range(len(labels_dev)):
labels_d.append(int(labels_dev[i]))
for i in range(len(labels_ev)):
labels_e.append(int(labels_ev[i]))
return input_tensor_train,labels_t,input_tensor_dev,labels_d,input_tensor_ev,labels_e,lang_tokenizer,labels_names_train,labels_names_dev, labels_names_eval