-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathgpt.py
1080 lines (999 loc) · 46.6 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2024, Tri Dao.
import logging
import math
import re
from collections import OrderedDict, namedtuple
from collections.abc import Sequence
from functools import partial
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import GPT2Config
from flash_attn.models.bigcode import remap_state_dict_hf_bigcode
from flash_attn.models.falcon import remap_state_dict_hf_falcon
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
from flash_attn.models.gptj import remap_state_dict_hf_gptj
from flash_attn.models.llama import remap_state_dict_hf_llama
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.modules.block import Block, ParallelBlock
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
from flash_attn.modules.mha import MHA, ParallelMHA
from flash_attn.modules.mlp import (
FusedMLP,
GatedMlp,
Mlp,
ParallelFusedMLP,
ParallelGatedMlp,
ParallelMLP,
)
from flash_attn.ops.activations import sqrelu_fwd
from flash_attn.utils.distributed import (
all_gather,
all_gather_raw,
get_dim_for_local_rank,
sync_shared_params,
)
from flash_attn.utils.generation import GenerationMixin
from flash_attn.utils.pretrained import state_dict_from_pretrained
try:
from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
ColumnParallelLinear = None
try:
from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
except ImportError:
FusedDenseSqreluDense = None
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn, RMSNorm
except ImportError:
layer_norm_fn, RMSNorm = None, None
logger = logging.getLogger(__name__)
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
attn_scale_power = 0.5 if not getattr(config, "mup_scale_qk_dot_by_d", False) else 1.0
softmax_scale = 1.0 if not config.scale_attn_weights else (head_dim ** (-attn_scale_power))
softmax_scale *= getattr(config, "mup_attn_multiplier", 1.0)
if config.scale_attn_by_inverse_layer_idx:
assert layer_idx is not None
softmax_scale /= float(layer_idx + 1)
dwconv = getattr(config, "attn_dwconv", False)
if dwconv:
assert process_group is None, "TensorParallel MHA does not support dwconv yet"
qkv_proj_bias = getattr(config, "qkv_proj_bias", True)
out_proj_bias = getattr(config, "out_proj_bias", True)
rotary_emb_dim = int(getattr(config, "rotary_emb_fraction", 0.0) * head_dim)
rotary_emb_base = getattr(config, "rotary_emb_base", 10000.0)
rotary_emb_scale_base = getattr(config, "rotary_emb_scale_base", None)
rotary_emb_interleaved = getattr(config, "rotary_emb_interleaved", False)
use_alibi = getattr(config, "use_alibi", False)
window_size = getattr(config, "window_size", (-1, -1))
use_flash_attn = getattr(config, "use_flash_attn", False)
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if not fused_bias_fc:
assert process_group is None, "TensorParallel MHA requires fused_bias_fc"
mha_cls = MHA if process_group is None else ParallelMHA
serial_kwargs = (
{"fused_bias_fc": fused_bias_fc, "dwconv": dwconv} if process_group is None else {}
)
parallel_kwargs = (
{
"process_group": process_group,
"sequence_parallel": getattr(config, "sequence_parallel", True),
}
if process_group is not None
else {}
)
num_heads_kv = getattr(config, "n_head_kv", None)
mixer_cls = partial(
mha_cls,
num_heads=config.num_attention_heads,
num_heads_kv=num_heads_kv,
qkv_proj_bias=qkv_proj_bias,
out_proj_bias=out_proj_bias,
dropout=config.attn_pdrop,
softmax_scale=softmax_scale,
causal=True,
layer_idx=layer_idx,
rotary_emb_dim=rotary_emb_dim,
rotary_emb_base=rotary_emb_base,
rotary_emb_scale_base=rotary_emb_scale_base,
rotary_emb_interleaved=rotary_emb_interleaved,
use_alibi=use_alibi,
window_size=window_size,
use_flash_attn=use_flash_attn,
**serial_kwargs,
**parallel_kwargs,
**factory_kwargs,
)
return mixer_cls
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
mlp_fc1_bias = getattr(config, "mlp_fc1_bias", True)
mlp_fc2_bias = getattr(config, "mlp_fc2_bias", True)
fused_mlp = getattr(config, "fused_mlp", False)
if fused_mlp:
assert config.activation_function in [
"gelu_new",
"gelu_fast",
"gelu_approx",
"gelu_pytorch_tanh",
"relu",
"sqrelu",
]
fused_dense_sqrelu_dense = getattr(config, "fused_dense_sqrelu_dense", False)
if fused_dense_sqrelu_dense:
assert config.activation_function == "sqrelu", (
"fused_dense_sqrelu_dense only " "supports approximate activation_function sqrelu"
)
assert not (fused_dense_sqrelu_dense and fused_mlp)
if not fused_mlp and not fused_dense_sqrelu_dense:
assert config.activation_function in [
"gelu",
"gelu_new",
"gelu_fast",
"gelu_approx",
"gelu_pytorch_tanh",
"relu",
"sqrelu",
"glu",
"swiglu",
"geglu",
]
if config.activation_function in ["glu", "swiglu", "geglu"]:
activation = (
F.sigmoid
if config.activation_function == "glu"
else (F.silu if config.activation_function == "swiglu" else F.gelu)
)
mlp_cls = GatedMlp if process_group is None else ParallelGatedMlp
parallel_kwargs = (
{
"process_group": process_group,
"sequence_parallel": getattr(config, "sequence_parallel", True),
}
if process_group is not None
else {}
)
mlp_multiple_of = getattr(config, "mlp_multiple_of", 128)
mlp_cls = partial(
mlp_cls,
hidden_features=config.n_inner,
activation=activation,
bias1=mlp_fc1_bias,
bias2=mlp_fc2_bias,
multiple_of=mlp_multiple_of,
**parallel_kwargs,
**factory_kwargs,
)
else:
if config.activation_function == "relu":
activation = partial(F.relu, inplace=True)
elif config.activation_function == "sqrelu":
activation = sqrelu_fwd
else:
approximate = (
"tanh"
if config.activation_function
in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
else "none"
)
activation = partial(F.gelu, approximate=approximate)
mlp_cls = Mlp if process_group is None else ParallelMLP
parallel_kwargs = (
{
"process_group": process_group,
"sequence_parallel": getattr(config, "sequence_parallel", True),
}
if process_group is not None
else {}
)
mlp_cls = partial(
mlp_cls,
hidden_features=config.n_inner,
activation=activation,
bias1=mlp_fc1_bias,
bias2=mlp_fc2_bias,
**parallel_kwargs,
**factory_kwargs,
)
else:
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
if isinstance(mlp_checkpoint_lvl, Sequence):
assert layer_idx is not None
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
if fused_mlp:
if FusedMLP is None:
raise ImportError("fused_dense is not installed")
activation = (
"gelu_approx"
if config.activation_function
in ["gelu_new", "gelu_fast", "gelu_approx", "gelu_pytorch_tanh"]
else config.activation_function
)
mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
parallel_kwargs = (
{
"process_group": process_group,
"sequence_parallel": getattr(config, "sequence_parallel", True),
}
if process_group is not None
else {}
)
mlp_cls = partial(
mlp_cls,
hidden_features=config.n_inner,
activation=activation,
checkpoint_lvl=mlp_checkpoint_lvl,
bias1=mlp_fc1_bias,
bias2=mlp_fc2_bias,
**parallel_kwargs,
**factory_kwargs,
)
elif fused_dense_sqrelu_dense:
if process_group is not None:
assert fused_mlp, "Tensor Parallel is not implemented for FusedDenseSqreluDense"
assert FusedDenseSqreluDense is not None
mlp_cls = partial(
FusedDenseSqreluDense,
hidden_features=config.n_inner,
checkpoint_lvl=mlp_checkpoint_lvl,
**factory_kwargs,
)
else:
raise RuntimeError("MLP type not supported")
return mlp_cls
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
sequence_parallel = getattr(config, "sequence_parallel", True)
mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
use_rms_norm = getattr(config, "rms_norm", False)
norm_cls = partial(
nn.LayerNorm if not use_rms_norm else RMSNorm,
eps=config.layer_norm_epsilon,
**factory_kwargs,
)
# TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
residual_in_fp32 = getattr(config, "residual_in_fp32", False)
resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
prenorm = getattr(config, "prenorm", True)
parallel_block = getattr(config, "parallel_block", False)
if not parallel_block:
block = Block(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
prenorm=prenorm,
resid_dropout1=resid_dropout1,
resid_dropout2=config.resid_pdrop,
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
residual_in_fp32=residual_in_fp32,
sequence_parallel=sequence_parallel and process_group is not None,
mark_shared_params=process_group is not None,
)
else:
assert prenorm
block = ParallelBlock(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
resid_dropout1=resid_dropout1,
resid_dropout2=config.resid_pdrop,
tied_norm=getattr(config, "parallel_block_tied_norm", False),
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
residual_in_fp32=residual_in_fp32,
sequence_parallel=sequence_parallel and process_group is not None,
mark_shared_params=process_group is not None,
)
block.layer_idx = layer_idx
return block
class GPTPreTrainedModel(nn.Module):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not isinstance(config, GPT2Config):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
"To create a model from a Google pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
@classmethod
def from_pretrained(
cls,
model_name,
config,
*args,
strict=True,
device=None,
dtype=None,
world_size=1,
rank=0,
**kwargs,
):
"""
Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
"""
# Instantiate model.
model = cls(config, *args, device=device, dtype=dtype, **kwargs)
# Load state_dict in cpu because we already initialized the model in GPU, and we don't
# want extra stuff taking up more GPU memory
state_dict = state_dict_from_pretrained(model_name, device="cpu", dtype=dtype)
if model_name.startswith("gpt2"):
state_dict = remap_state_dict_hf_gpt2(state_dict, config)
elif model_name.startswith("facebook/opt"):
state_dict = remap_state_dict_hf_opt(state_dict, config)
elif model_name.startswith("EleutherAI/gpt-j-") or model_name.startswith(
"togethercomputer/GPT-JT-"
):
state_dict = remap_state_dict_hf_gptj(state_dict, config)
elif (
model_name.startswith("EleutherAI/gpt-neox-")
or model_name.startswith("EleutherAI/pythia-")
or model_name.startswith("togethercomputer/RedPajama-INCITE-")
):
state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
elif model_name.startswith("tiiuae/falcon-"):
state_dict = remap_state_dict_hf_falcon(state_dict, config)
elif model_name.startswith("meta-llama/Llama-"):
state_dict = remap_state_dict_hf_llama(state_dict, config)
elif model_name.startswith("bigcode/") or model_name.startswith("WizardLM/"):
state_dict = remap_state_dict_hf_bigcode(state_dict, config)
else:
raise NotImplementedError(f"Model {model_name} not supported")
if world_size > 1:
state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
load_return = model.load_state_dict(state_dict, strict=strict)
logger.info(load_return)
return model
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(
module, n_layer, initializer_range=0.02, mup_width_scale=1.0, rescale_prenorm_residual=True
):
mup_init_scale = math.sqrt(mup_width_scale)
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range * mup_init_scale)
optim_cfg = getattr(module.weight, "_optim", {})
optim_cfg.update({"lr_multiplier": mup_width_scale})
setattr(module.weight, "_optim", optim_cfg)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
nn.init.normal_(
p, mean=0.0, std=initializer_range * mup_init_scale / math.sqrt(2 * n_layer)
)
class GPTModel(GPTPreTrainedModel):
def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
super().__init__(config)
factory_kwargs = {"device": device, "dtype": dtype}
self.process_group = process_group
self.sequence_parallel = getattr(config, "sequence_parallel", True)
assert config.activation_function in [
"gelu",
"gelu_new",
"gelu_fast",
"gelu_approx",
"gelu_pytorch_tanh",
"relu",
"sqrelu",
"glu",
"swiglu",
"geglu",
]
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
self.embeddings_multiplier = getattr(config, "mup_embeddings_multiplier", 1.0)
# TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
self.residual_in_fp32 = getattr(config, "residual_in_fp32", False)
# These 2 options are for OPT-350m
self.prenorm = getattr(config, "prenorm", True)
use_rms_norm = getattr(config, "rms_norm", False)
word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
# For GPT-J, GPT-NeoX
self.parallel_block = getattr(config, "parallel_block", False)
if process_group is None:
self.embeddings = GPT2Embeddings(
config.hidden_size,
vocab_size,
config.max_position_embeddings,
word_embed_proj_dim=word_embed_proj_dim,
**factory_kwargs,
)
else:
self.embeddings = ParallelGPT2Embeddings(
config.hidden_size,
vocab_size,
config.max_position_embeddings,
process_group=process_group,
sequence_parallel=self.sequence_parallel,
**factory_kwargs,
)
# We change the order of dropout, residual and layer norm:
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
# Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
# the main branch (output of MLP). The model definition is unchanged, but the mapping of the
# nn.Dropout probabilities are changed.
# This is for performance reason: we can fuse dropout + add + layer_norm.
self.layers = nn.ModuleList(
[
create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
for i in range(config.num_hidden_layers)
]
)
rotary_emb_fraction = getattr(config, "rotary_emb_fraction", 0.0)
if rotary_emb_fraction > 0.0: # Tie all the RotaryEmbedding modules to share the same cos/sin cache
for layer in self.layers[1:]:
layer.mixer.rotary_emb = self.layers[0].mixer.rotary_emb
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln:
if layer_norm_fn is None:
raise ImportError("Triton is not installed")
if self.prenorm:
self.drop_f = nn.Dropout(config.resid_pdrop)
norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
self.ln_f = norm_cls(
config.hidden_size, eps=config.layer_norm_epsilon, **factory_kwargs
)
if process_group is not None:
for p in self.ln_f.parameters():
# Mark the norm parameters as "shared_params" so that we sync their values at init.
p._shared_params = True
# Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
if self.sequence_parallel:
p._sequence_parallel = True
self.apply(
partial(
_init_weights,
n_layer=config.num_hidden_layers,
initializer_range=config.initializer_range,
mup_width_scale=getattr(config, "mup_width_scale", 1.0),
)
)
self.tie_weights()
def tie_weights(self):
if self.process_group is not None:
sync_shared_params(self, self.process_group)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return {
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
for i, layer in enumerate(self.layers)
}
def forward(self, input_ids, position_ids=None, inference_params=None):
# If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
# dimensions so that we can split on it easily, in case of small batch size.
# Only the attention layers need to know the seqlen.
embedding_kwargs = (
{"combine_batch_seqlen_dim": True}
if self.process_group is not None and self.sequence_parallel
else {}
)
hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
if self.embeddings_multiplier != 1.0:
hidden_states = hidden_states * self.embeddings_multiplier
if self.parallel_block:
hidden_states2 = None
residual = None
mixer_kwargs = (
{"seqlen": input_ids.shape[1]}
if self.process_group is not None and self.sequence_parallel
else {}
)
if inference_params is not None:
mixer_kwargs["inference_params"] = inference_params
for layer in self.layers:
if self.prenorm:
if not self.parallel_block:
hidden_states, residual = layer(
hidden_states, residual, mixer_kwargs=mixer_kwargs
)
else:
hidden_states, hidden_states2, residual = layer(
hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if self.prenorm:
if not self.fused_dropout_add_ln:
dropped = self.drop_f(hidden_states)
if not self.parallel_block:
residual = (dropped + residual) if residual is not None else dropped
else:
dropped2 = self.drop_f(hidden_states2)
residual = (
(residual + dropped + dropped2)
if residual is not None
else dropped + dropped2
)
hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = layer_norm_fn(
hidden_states,
self.ln_f.weight,
self.ln_f.bias,
residual=residual,
x1=None if not self.parallel_block else hidden_states2,
eps=self.ln_f.eps,
dropout_p=self.drop_f.p if self.training else 0.0,
prenorm=False,
is_rms_norm=isinstance(self.ln_f, RMSNorm)
)
return hidden_states
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(config)
self.process_group = process_group
self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
lm_head_bias = getattr(config, "lm_head_bias", False)
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
# This option is for OPT-350m
word_embed_proj_dim = getattr(config, "word_embed_proj_dim", None)
embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
if word_embed_proj_dim is not None:
self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
else:
self.project_out = None
mup_width_scale = getattr(config, "mup_width_scale", 1.0)
mup_output_multiplier = getattr(config, "mup_output_multiplier", 1.0)
self.output_scale = mup_output_multiplier * mup_width_scale
if process_group is None:
self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
else:
if ColumnParallelLinear is None:
raise ImportError("fused_dense_lib is not installed")
self.lm_head = ColumnParallelLinear(
embed_dim,
vocab_size,
process_group,
bias=lm_head_bias,
sequence_parallel=getattr(config, "sequence_parallel", True),
**factory_kwargs,
)
self.norm_head = getattr(config, "norm_head", False)
# Initialize weights and apply final processing
self.apply(
partial(
_init_weights,
n_layer=config.num_hidden_layers,
initializer_range=config.initializer_range,
mup_width_scale=mup_width_scale,
)
)
self.tie_weights()
def tie_weights(self):
if self.tie_word_embeddings:
self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
if self.process_group is not None:
sync_shared_params(self, self.process_group)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.transformer.allocate_inference_cache(
batch_size, max_seqlen, dtype=dtype, **kwargs
)
def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
"""
input_ids: (batch, seqlen) int tensor
inference_params: for generation. Adapted from Megatron-LM (and Apex)
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
num_last_tokens: if > 0, only return the logits for the last n tokens
"""
assert (
input_ids.ndim == 2
), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
b, slen = input_ids.shape
hidden_states = self.transformer(
input_ids, position_ids=position_ids, inference_params=inference_params
)
if inference_params is not None:
assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
if num_last_tokens > 0:
hidden_states = hidden_states[:, -num_last_tokens:]
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
if self.output_scale != 1.0:
hidden_states = hidden_states * self.output_scale
if not self.norm_head:
lm_logits = self.lm_head(hidden_states)
else:
lm_head_weight = F.normalize(self.lm_head.weight)
if isinstance(self.lm_head, ColumnParallelLinear) and self.lm_head.sequence_parallel:
hidden_states = all_gather(hidden_states, self.lm_head.process_group)
lm_logits = F.linear(hidden_states, lm_head_weight, bias=self.lm_head.bias)
# During inference, we want the full logit for sampling
if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
return CausalLMOutput(logits=lm_logits)
def load_state_dict(self, state_dict, strict=True):
# Remapping from our checkpoints that used a different ordering of layers in the block
# Previous: Attn / MLP -> Dropout -> Add -> LN
# Current: Dropout -> Add -> LN -> Attn / MLP
if "transformer.ln_0.weight" in state_dict:
n_layers = len(self.transformer.layers)
ln_weight = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.weight")
ln_bias = state_dict.pop(f"transformer.layers.{n_layers - 1}.norm2.bias")
state_dict["transformer.ln_f.weight"] = ln_weight
state_dict["transformer.ln_f.bias"] = ln_bias
for l in reversed(range(n_layers)):
ln_weight = state_dict.pop(f"transformer.layers.{l}.norm1.weight")
ln_bias = state_dict.pop(f"transformer.layers.{l}.norm1.bias")
state_dict[f"transformer.layers.{l}.norm2.weight"] = ln_weight
state_dict[f"transformer.layers.{l}.norm2.bias"] = ln_bias
if l > 0:
ln_weight = state_dict.pop(f"transformer.layers.{l - 1}.norm2.weight")
ln_bias = state_dict.pop(f"transformer.layers.{l - 1}.norm2.bias")
state_dict[f"transformer.layers.{l}.norm1.weight"] = ln_weight
state_dict[f"transformer.layers.{l}.norm1.bias"] = ln_bias
ln_weight = state_dict.pop("transformer.ln_0.weight")
ln_bias = state_dict.pop("transformer.ln_0.bias")
state_dict[f"transformer.layers.0.norm1.weight"] = ln_weight
state_dict[f"transformer.layers.0.norm1.bias"] = ln_bias
return super().load_state_dict(state_dict, strict=strict)
def shard_state_dict_tp(state_dict, config, world_size, rank):
"""Convert the state_dict of a standard GPT model to the state_dict of a GPT model
with tensor parallel.
This function modifies state_dict in place.
"""
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
assert vocab_size % world_size == 0
assert config.hidden_size % world_size == 0
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
assert inner_dim % world_size == 0
n_head = config.n_head
n_head_kv = getattr(config, "n_head_kv", n_head)
embed_dim = config.hidden_size
head_dim = embed_dim // n_head
def shard_first_dim(state_dict, key):
if key in state_dict:
x = state_dict[key]
dim = x.shape[0] // world_size
state_dict[key] = x[rank * dim : (rank + 1) * dim]
def shard_last_dim(state_dict, key, multiple_of=1):
if key in state_dict:
x = state_dict[key]
dim_each_rank = [
get_dim_for_local_rank(x.size(-1), world_size, local_rank, multiple_of)
for local_rank in range(world_size)
]
beg, end = tuple(sum(dim_each_rank[:pos]) for pos in (rank, rank + 1))
state_dict[key] = x[..., beg:end]
def shard_gatedmlp_fc1_dim(state_dict, key):
if key in state_dict:
x = state_dict[key]
dim = x.shape[0] // world_size // 2
state_dict[key] = rearrange(
rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim : (rank + 1) * dim],
"two o ... -> (two o) ...",
)
def shard_qkv_headdim(state_dict, key):
if key in state_dict:
n_head_each_rank = [
get_dim_for_local_rank(n_head, world_size, local_rank)
for local_rank in range(world_size)
]
n_head_kv_each_rank = [
get_dim_for_local_rank(n_head_kv, world_size, local_rank)
for local_rank in range(world_size)
]
beg_n_head = sum(n_head_each_rank[:rank])
end_n_head = sum(n_head_each_rank[: rank + 1])
beg_n_head_kv = sum(n_head_kv_each_rank[:rank])
end_n_head_kv = sum(n_head_kv_each_rank[: rank + 1])
if n_head_kv == n_head:
x = rearrange(state_dict[key], "(three d) ... -> three d ...", three=3)
state_dict[key] = rearrange(
x[:, beg_n_head * head_dim : end_n_head * head_dim],
"three d ... -> (three d) ...",
)
else:
x = rearrange(
state_dict[key],
"(nheadqkv headdim) ... -> nheadqkv headdim ...",
nheadqkv=n_head + 2 * n_head_kv,
)
state_dict[key] = rearrange(
torch.cat(
[
x[beg_n_head:end_n_head],
x[n_head + beg_n_head_kv : n_head + end_n_head_kv],
x[
n_head
+ n_head_kv
+ beg_n_head_kv : n_head
+ n_head_kv
+ end_n_head_kv
],
],
dim=0,
),
"nheadqkv headdim ... -> (nheadqkv headdim) ...",
)
shard_first_dim(state_dict, "transformer.embeddings.word_embeddings.weight")
if "lm_head.weight" in state_dict:
shard_first_dim(state_dict, "lm_head.weight")
if "transformer.embeddings.position_embeddings.weight" in state_dict:
shard_last_dim(state_dict, "transformer.embeddings.position_embeddings.weight")
for i in range(config.num_hidden_layers):
shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
shard_qkv_headdim(state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
shard_last_dim(
state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", multiple_of=head_dim
)
if rank != 0:
state_dict.pop(f"transformer.layers.{i}.mixer.out_proj.bias", None)
if config.activation_function in ["glu", "swiglu", "geglu"]:
shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
shard_gatedmlp_fc1_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
else:
shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
shard_first_dim(state_dict, f"transformer.layers.{i}.mlp.fc1.bias")
shard_last_dim(state_dict, f"transformer.layers.{i}.mlp.fc2.weight")
if rank != 0:
state_dict.pop(f"transformer.layers.{i}.mlp.fc2.bias", None)
return state_dict
def combine_state_dicts_tp(state_dicts: List[Dict[str, torch.Tensor]], config: GPT2Config):
"""Convert the list of sharded state_dict of a GPT model with tensor parallel to
the state_dict of a standard GPT model.
This function is meant to be the "reverse" of shard_state_dict_tp.
Precondition:
- state_dicts should be ordered in the same way as the shards were created.
"""
world_size = len(state_dicts)
keys = state_dicts[0].keys()
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
assert vocab_size % world_size == 0
assert config.hidden_size % world_size == 0
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
assert inner_dim % world_size == 0
assert config.hidden_size % config.n_head == 0
headdim = config.hidden_size // config.n_head
# Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
# vocab_size // world_size coordinates are nonzero.
def combine_word_embeddings(state_dicts, state_dict, key):
dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
def combine_dim(state_dicts, state_dict, key, dim=-1):
if key in state_dict:
state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
def combine_qkv_headdim(state_dicts, state_dict, key):
n_head = config.n_head
n_head_kv = getattr(config, "n_head_kv", n_head)
if key in state_dict:
if n_head_kv == n_head:
xs = [
rearrange(s[key], "(three d) ... -> three d ...", three=3) for s in state_dicts
]
state_dict[key] = rearrange(torch.cat(xs, dim=1), "three d ... -> (three d) ...")
else:
n_head_each_rank = [
get_dim_for_local_rank(n_head, world_size, local_rank)
for local_rank in range(world_size)
]
n_head_kv_each_rank = [
get_dim_for_local_rank(n_head_kv, world_size, local_rank)
for local_rank in range(world_size)
]
xs = [
rearrange(
s[key],
"(nheadqkv headdim) ... -> nheadqkv headdim ...",
nheadqkv=rank_n_head + 2 * rank_n_head_kv,
headdim=headdim,
)
for s, rank_n_head, rank_n_head_kv in zip(
state_dicts, n_head_each_rank, n_head_kv_each_rank
)
]
wq = torch.cat([x[: n_head_each_rank[rank]] for rank, x in enumerate(xs)], dim=0)
wk = torch.cat(
[
x[
n_head_each_rank[rank] : n_head_each_rank[rank]
+ n_head_kv_each_rank[rank]
]
for rank, x in enumerate(xs)
],
dim=0,
)
wv = torch.cat(
[
x[n_head_each_rank[rank] + n_head_kv_each_rank[rank] :]
for rank, x in enumerate(xs)
],
dim=0,
)
wqkv = torch.cat(
[wq, wk, wv],
dim=0,
)
state_dict[key] = rearrange(
wqkv,
"nheadqkv headdim ... -> (nheadqkv headdim) ...",
)
def combine_gated_mlp(state_dicts, state_dict, key):
if key in state_dict:
xs = [rearrange(s[key], "(two d) ... -> two d ...", two=2) for s in state_dicts]
state_dict[key] = rearrange(torch.cat(xs, dim=1), "two d ... -> (two d) ...")
state_dict = state_dicts[0].copy() # don't modify state_dict[0] inplace
combine_word_embeddings(
state_dicts, state_dict, "transformer.embeddings.word_embeddings.weight"
)
if "lm_head.weight" in state_dict:
combine_word_embeddings(state_dicts, state_dict, "lm_head.weight")
if "transformer.embeddings.position_embeddings.weight" in state_dict:
combine_dim(
state_dicts, state_dict, "transformer.embeddings.position_embeddings.weight", -1
)
mlp_combine_fn = (
combine_gated_mlp
if config.activation_function in ["glu", "swiglu", "geglu"]
else partial(combine_dim, dim=0)
)
for i in range(config.num_hidden_layers):
combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.weight")
combine_qkv_headdim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.Wqkv.bias")
combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mixer.out_proj.weight", -1)
mlp_combine_fn(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.weight")
combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc1.bias", 0)
combine_dim(state_dicts, state_dict, f"transformer.layers.{i}.mlp.fc2.weight", -1)
return state_dict
def remap_state_dict_hf_gpt2(state_dict, config):
# Word embedding and position embedding
def key_mapping_pos_emb(key):
return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)
state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("wte.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
key = re.sub(r"^h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
for d in range(config.num_hidden_layers):
W1 = state_dict.pop(f"h.{d}.mlp.c_fc.weight")
state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = W1.t()
W2 = state_dict.pop(f"h.{d}.mlp.c_proj.weight")
state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()
def key_mapping_mlp(key):
key = re.sub(r"^h.(\d+).mlp.c_fc.bias", r"transformer.layers.\1.mlp.fc1.bias", key)
key = re.sub(r"^h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
for d in range(config.num_hidden_layers):
state_dict.pop(f"h.{d}.attn.bias", None) # We don't store this bias
Wqkv = state_dict.pop(f"h.{d}.attn.c_attn.weight")
state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
Wout = state_dict.pop(f"h.{d}.attn.c_proj.weight")
state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()
def key_mapping_attn(key):
key = re.sub(r"^h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
key = re.sub(
r"^h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def remap_state_dict_megatron(state_dict, config):
def key_mapping_transformer(key):
key = re.sub(r"^language_model.encoder.", "transformer.", key)
key = re.sub(r"^language_model.", "transformer.", key)
return key
state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
# Word embedding and position embedding
def key_mapping_pos_emb(key):
return re.sub(r"^wpe.", "transformer.embeddings.position_embeddings.", key)
state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embedding.word_embeddings.weight")